Importance of neural network complexity for the automatic segmentation of individual thigh muscles in MRI images from patients with neuromuscular diseases

被引:0
|
作者
Martin, Sandra [1 ,2 ,3 ]
Andre, Remi [3 ]
Trabelsi, Amira [1 ]
Michel, Constance P. [2 ]
Fortanier, Etienne [4 ]
Attarian, Shahram [4 ]
Guye, Maxime [2 ]
Dubois, Marc [3 ]
Abdeddaim, Redha [3 ]
Bendahan, David [2 ]
机构
[1] Multiwave Technol, Marseille, France
[2] Aix Marseille Univ, CNRS, CRMBM, Marseille, France
[3] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[4] Aix Marseille Univ, APHM, Serv Neurol, Marseille, France
来源
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE | 2025年 / 38卷 / 02期
关键词
MRI; Neural network complexity; Deep learning; Thigh segmentation; U-Net; MARIE-TOOTH DISEASE; SKELETAL-MUSCLE; PROGRESSION;
D O I
10.1007/s10334-024-01221-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveSegmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.Material and MethodsU-Net architectures with different complexities have been compared for the quantification of the fat fraction in each muscle group selected in the central part of the thigh region. The corresponding performance has been assessed in terms of Dice score (DSC) and FF quantification error. The database contained 1450 thigh images from 59 patients and 14 healthy subjects (age: 47 +/- 17 years, sex: 36F, 37M). Ten individual muscles were segmented in each image. The performance of each model was compared to nnU-Net, a complex architecture with 4.35 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 107 parameters, 12.8 Gigabytes of peak memory usage and 167 h of training time.ResultsAs expected, nnU-Net achieved the highest DSC (94.77 +/- 0.13%). A simpler U-Net (5.81 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 105 parameters, 2.37 Gigabytes, 14 h of training time) achieved a lower DSC but still above 90%. Surprisingly, both models achieved a comparable FF estimation.DiscussionThe poor correlation between observed DSC and FF indicates that less complex architectures, reducing GPU memory utilization and training time, can still accurately quantify FF.
引用
收藏
页码:175 / 189
页数:15
相关论文
共 11 条
  • [1] Automatic Detection and Segmentation of Mitochondria from SEM Images using Deep Neural Network
    Liu, Jing
    Li, Weifu
    Xiao, Chi
    Hong, Bei
    Xie, Qiwei
    Han, Hua
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 628 - 631
  • [2] Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network
    Wang, Hesheng
    Qu, Tanxia
    Bernstein, Kenneth
    Barbee, David
    Kondziolka, Douglas
    RADIATION ONCOLOGY, 2023, 18 (01)
  • [3] Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network
    Hesheng Wang
    Tanxia Qu
    Kenneth Bernstein
    David Barbee
    Douglas Kondziolka
    Radiation Oncology, 18
  • [4] Brain hyperintensities: automatic segmentation of white matter hyperintensities in clinical brain MRI images using improved deep neural network
    Kumar, Puranam Revanth
    Jha, Rajesh Kumar
    Kumar, P. Akhendra
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (11) : 15545 - 15581
  • [5] Automatic liver tumor segmentation and identification using fully connected convolutional neural network from CT images
    Vadlamudi, Sree Harsha
    Sai Souhith Reddy, Yerrabapu
    Ajith Sai Kumar Reddy, Polu
    Periasamy, Prakasam
    Vali Mohamad, Noor Mohammed
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (24)
  • [6] Automatic Substantia Nigra Segmentation in Neuromelanin-Sensitive MRI by Deep Neural Network in Patients With Prodromal and Manifest Synucleinopathy
    Krupicka, R.
    Marecek, S.
    Mala, C.
    Lang, M.
    Klempir, O.
    Duspivova, T.
    Siroka, R.
    Jarosikova, T.
    Keller, J.
    Sonka, K.
    Ruzicka, E.
    Dusek, P.
    PHYSIOLOGICAL RESEARCH, 2019, 68 : S453 - S458
  • [7] Automated Segmentation of Spinal Muscles From Upright Open MRI Using a Multiscale Pyramid 2D Convolutional Neural Network
    Dourthe, Benjamin
    Shaikh, Noor
    Pai, Anoosha S.
    Fels, Sidney
    Brown, Stephen H. M.
    Wilson, David R.
    Street, John
    Oxland, Thomas R.
    SPINE, 2022, 47 (16) : 1179 - 1186
  • [8] Automatic Left Ventricle Segmentation from Short-Axis MRI Images Using U-Net with Study of the Papillary Muscles’ Removal Effect
    Wafa Baccouch
    Sameh Oueslati
    Basel Solaiman
    Dhaker Lahidheb
    Salam Labidi
    Journal of Medical and Biological Engineering, 2023, 43 : 278 - 290
  • [9] Automatic Left Ventricle Segmentation from Short-Axis MRI Images Using U-Net with Study of the Papillary Muscles' Removal Effect
    Baccouch, Wafa
    Oueslati, Sameh
    Solaiman, Basel
    Lahidheb, Dhaker
    Labidi, Salam
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (03) : 278 - 290
  • [10] A Multi-Scope Convolutional Neural Network For Automatic Left Ventricle Segmentation From Magnetic Resonance Images: Deep-learning At Multiple Scopes
    Li, Xinyi
    Wang, Yuanyuan
    Yan, Wenjun
    van der Geest, Rob J.
    Li, Zeju
    Tao, Qian
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,