A deep ensemble learning approach for squamous cell classification in cervical cancer

被引:0
|
作者
Gangrade, Jayesh [1 ]
Kuthiala, Rajit [1 ]
Gangrade, Shweta [2 ]
Singh, Yadvendra Pratap [1 ]
Manoj, R. [3 ]
Solanki, Surendra [1 ]
机构
[1] Manipal Univ Jaipur, Sch Comp Sci & Engn, Dept Artificial Intelligence & Machine Learning, Jaipur, Rajasthan, India
[2] Manipal Univ Jaipur, Sch Comp Sci & Engn, Dept Informat Technol, Jaipur, Rajasthan, India
[3] Manipal Inst Technol Manipal, Manipal Acad Higher Educ, Dept Comp Sci & Engn, Udupi, Karnataka, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Cervical Cancer; Image Classification; AlexNet; SqueezeNet; Ensemble Learning; IMAGES;
D O I
10.1038/s41598-025-91786-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identifying potential cancerous alterations. While developed nations demonstrate commendable efficiency in Pap smear acquisition, the process remains laborious and time-intensive. Conversely, in less developed regions, there is a pressing need for streamlined, computer-aided methodologies for the pre-analysis and treatment of cervical cancer. This study focuses on the classification of squamous cells into five distinct classes, providing a nuanced assessment of cervical cancer severity. Utilizing a dataset comprising over 4096 images from SimpakMed, available on Kaggle, we employed ensemble technique which included the Convolutional Neural Network (CNN), AlexNet, and SqueezeNet for image classification, achieving accuracies of 90.8%, 92%, and 91% respectively. Particularly noteworthy is the proposed ensemble technique, which surpasses individual model performances, achieving an impressive accuracy of 94%. This ensemble approach underscores the efficacy of our method in precise squamous cell classification and, consequently, in gauging the severity of cervical cancer. The results represent a promising advancement in the development of more efficient diagnostic tools for cervical cancer in resource-constrained settings.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [22] Deep learning-based approaches for robust classification of cervical cancer
    Ishak Pacal
    Serhat Kılıcarslan
    Neural Computing and Applications, 2023, 35 : 18813 - 18828
  • [23] Deep learning-based approaches for robust classification of cervical cancer
    Pacal, Ishak
    Kilicarslan, Serhat
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (25) : 18813 - 18828
  • [24] Comparison of deep transfer learning models for classification of cervical cancer from pap smear images
    Kaur, Harmanpreet
    Sharma, Reecha
    Kaur, Jagroop
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
    Hameed, Zabit
    Zahia, Sofia
    Garcia-Zapirain, Begonya
    Javier Aguirre, Jose
    Maria Vanegas, Ana
    SENSORS, 2020, 20 (16) : 1 - 17
  • [26] TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification
    Bhavsar, Barkha
    Shrimali, Bela
    COMPUTATIONAL INTELLIGENCE, 2025, 41 (01)
  • [27] Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images
    Miyagi, Yasunari
    Takehara, Kazuhiro
    Miyake, Takahito
    MOLECULAR AND CLINICAL ONCOLOGY, 2019, 11 (06) : 583 - 589
  • [28] Ensemble-based Deep Learning Approach for Performance Improvement of BIM Element Classification
    Young Su Yu
    Si Hyun Kim
    Won Bok Lee
    Bon Sang Koo
    KSCE Journal of Civil Engineering, 2023, 27 : 1898 - 1915
  • [29] Enhancing cardiac diagnostics: a deep learning ensemble approach for precise ECG image classification
    Alsayat, Ahmed
    Mahmoud, Alshimaa Abdelraof
    Alanazi, Saad
    Mostafa, Ayman Mohamed
    Alshammari, Nasser
    Alrowaily, Majed Abdullah
    Shabana, Hosameldeen
    Ezz, Mohamed
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [30] Ensemble Learning of Lightweight Deep Learning Models Using Knowledge Distillation for Image Classification
    Kang, Jaeyong
    Gwak, Jeonghwan
    MATHEMATICS, 2020, 8 (10)