Harmonic maps between surfaces homotopic to a (branched) covering map

被引:0
作者
Kim, Inkang [1 ]
Wan, Xueyuan [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 02455, South Korea
[2] Chongqing Univ Technol, Math Sci Res Ctr, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic map; Riemann surface; Branched covering; Teichm & uuml; ller space; Energy function; Hopf differential; MINIMAL IMMERSIONS; EXISTENCE;
D O I
10.1007/s00209-024-03677-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we consider the harmonic maps between surfaces Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} and S in the homotopy class of a (branched) covering map u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}. We prove the uniqueness of critical points of the energy function and the injectivity of the Hopf differential map if u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is a covering map. On the other hand, if u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is a branched covering, we show that the uniqueness of critical points fails if u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is a non-simple branched covering and prove the injectivity of Hopf differential map Phi:T(S)-> QD(Sigma,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi :\mathcal {T}(S)\rightarrow \operatorname {QD}(\Sigma ,g)$$\end{document} when g=[u0 & lowast;h]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=[u_0<^>* h]$$\end{document} for some hyperbolic metric h on S. This provides concrete counterexamples to the non-uniqueness of critical points in the branch covering case.
引用
收藏
页数:9
相关论文
共 17 条
[1]   CONSTRUCTION OF BRANCHED COVERINGS OF LOW-DIMENSIONAL MANIFOLDS [J].
BERSTEIN, I ;
EDMONDS, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) :87-124
[2]  
Bonk M., 2017, MATH SURVEYS MONOGR, V225
[3]   DEFORMATION OF MAPS TO BRANCHED COVERINGS IN DIMENSION 2 [J].
EDMONDS, AL .
ANNALS OF MATHEMATICS, 1979, 110 (01) :113-125
[4]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[5]   ON HOMOTOPIC HARMONIC MAPS [J].
HARTMAN, P .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :673-&
[6]  
Imayoshi Y, 1992, An Introduction to Teichmller Spaces. Translated and revised from the Japanese by the authors
[7]  
Jost J., 2002, COMPACT RIEMANN SURF
[8]   Convexity of energy functions of harmonic maps homotopic to covering maps of surfaces [J].
Kim, Inkang ;
Wan, Xueyuan ;
Zhang, Genkai .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (10)
[9]  
Lamb E.J., 2012, The Hopf differential and harmonic maps between branched hyperbolic structures
[10]   THE EXISTENCE OF MINIMAL IMMERSIONS OF 2-SPHERES [J].
SACKS, J ;
UHLENBECK, K .
ANNALS OF MATHEMATICS, 1981, 113 (01) :1-24