Non parametric estimation of the jump coefficient of a diffusion with jumps

被引:0
作者
Schmisser, Emeline [1 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, Villeneuve Dascq, France
关键词
Jump diffusions; Nonparametric estimation; Model selection; THRESHOLD ESTIMATION; BOUNDS; MODELS;
D O I
10.1007/s11203-025-09324-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a jump diffusion process (Xt)t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t \ge 0}$$\end{document} with drift function b, diffusion coefficient sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and jump coefficient xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}. This process is supposed to be ergodic, exponentially beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing and stationary. It is observed at discrete times t=0,Delta,& mldr;,n Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0,\Delta ,\ldots ,n\Delta $$\end{document}. The sampling interval Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} tends to 0 and the time interval n Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\Delta $$\end{document} tends to infinity. We construct a robust, adaptive non-parametric estimator of the function xi 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi <^>4$$\end{document} thanks to a penalized least-square approach. We provide bounds of the empirical and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-risk of our estimator.
引用
收藏
页数:32
相关论文
共 21 条
[1]   ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA [J].
Ait-Sahalia, Yacine ;
Jacod, Jean .
ANNALS OF STATISTICS, 2009, 37 (5A) :2202-2244
[2]  
Applebaum D., 2009, CAMBRIDGE STUDIES AD, V116, DOI DOI 10.1017/CBO9780511809781
[3]   On the functional estimation of jump-diffusion models [J].
Bandi, FM ;
Nguyen, TH .
JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) :293-328
[4]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[5]   Exchangeable fragmentation-coalescence processes and their equilibrium measures [J].
Berestycki, J .
ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 :770-824
[6]   Total variation distance for discretely observed Levy processes: A Gaussian approximation of the small jumps [J].
Carpentier, Alexandra ;
Duval, Celine ;
Mariucci, Ester .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02) :901-939
[7]   Penalized nonparametric mean square estimation of the coefficients of diffusion processes [J].
Comte, Fabienne ;
Genon-Catalot, Valentine ;
Rozenholc, Yves .
BERNOULLI, 2007, 13 (02) :514-543
[8]   A nonparametric approach to the estimation of jump-diffusion models with asymmetric kernels [J].
Hanif, Muhammad .
COGENT MATHEMATICS, 2016, 3
[9]   Reweighted Nadaraya-Watson estimation of jump-diffusion models [J].
Hanif, Muhammad ;
Wang HanChao ;
Lin ZhengYan .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) :1005-1016
[10]  
Lorentz GG, 1993, GRUNDLEHREN MATH WIS, V303