Observations about skew morphisms of cyclic groups

被引:0
作者
Bachraty, Martin [1 ]
Hagara, Michal [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81005, Slovakia
关键词
Skew morphism; Cyclic group; Skew morphism group; Regular Cayley map; REGULAR CAYLEY MAPS;
D O I
10.1007/s10801-024-01371-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A permutation phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on a finite group G is a skew morphism of G if phi(1G)=1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (1_G)=1_G$$\end{document} and there exists a function pi:G -> Z|<phi >|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \!: G \rightarrow \mathbb {Z}_{|\langle \varphi \rangle |}$$\end{document} such that phi(ab)=phi(a)phi pi(a)(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (ab) = \varphi (a)\varphi <^>{\pi (a)}(b)$$\end{document} for all a,b is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in G$$\end{document}. In this paper, we develop an efficient algorithm for generating skew morphisms of finite cyclic groups and use it to determine all skew morphisms for cyclic groups up to order 1175. We then use this census to prove a number of new theorems about skew morphisms of finite cyclic groups. For example, we prove that the set of all skew morphisms of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_n$$\end{document} is itself a group if and only if all skew morphisms of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_n$$\end{document} are automorphisms, and we also determine all n for which every non-trivial skew morphism of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_n$$\end{document} gives rise to a regular Cayley map. In addition, we classify skew morphisms for all finite cyclic groups of orders p2q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<^>2q$$\end{document} and p3q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<^>3q$$\end{document} where p and q are primes satisfying p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<q$$\end{document}.
引用
收藏
页数:23
相关论文
共 22 条
[1]  
Bachraty M., 2016, Symmetries in Graphs, Maps, and Polytopes, P1, DOI [10.1007/978-3-319-30451-91, DOI 10.1007/978-3-319-30451-91]
[2]  
Bachraty M., 2020, Ph.D. thesis
[3]  
Bachraty M., A census of skew-morphisms for cyclic groups of small orders
[4]  
Bachraty M., List of skew-morphisms of cyclic groups up to order 161
[5]   Quotients of skew morphisms of cyclic groups [J].
Bachraty, Martin .
ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (02)
[6]  
Bachraty M, 2017, AUSTRALAS J COMB, V67, P259
[7]  
Conder M., List of skew-morphisms for small cyclic groups
[8]   Regular t-balanced Cayley maps [J].
Conder, Marston ;
Jajcay, Robert ;
Tucker, Tom .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :453-473
[9]   Cyclic complements and skew morphisms of groups [J].
Conder, Marston D. E. ;
Jajcay, Robert ;
Tucker, Thomas W. .
JOURNAL OF ALGEBRA, 2016, 453 :68-100
[10]  
Conder MDE, 2014, T AM MATH SOC, V366, P3585