Flow and heat transfer analysis of MHD ternary hybrid nanofluid flow through a vertical porous microchannel with slip boundary conditions

被引:2
作者
Hema, S. [1 ]
Venkatesh, P. [2 ]
Gireesha, B. J. [1 ]
Pavithra, C. G. [1 ]
机构
[1] Kuvempu Univ, Dept Studies & Res Math, Shivamogga, Karnataka, India
[2] Sahyadri Sci Coll, Dept Math, Shivamogga, Karnataka, India
关键词
Vertical porous microchannel; Heat transfer; Ternary hybrid nanofluid; Slip boundary conditions; Entropy generation; Runge-Kutta-Fehlberg method; ENTROPY GENERATION; MIXED CONVECTION;
D O I
10.1007/s41939-025-00764-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work unveils the outcomes of the dynamics and thermal characteristics of an MHD ternary hybrid nanofluid passing through an upright porous microchannel with slip boundary conditions. A pressure gradient is the factor that causes the flow. A ternary hybrid nanofluid combines three types of nanoparticles in a base fluid for superior heat transfer. It's used in advanced cooling systems for electronics, engines, and solar energy. In this study, the shape dependent nanoparticles Ag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ag$$\end{document}, Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cu$$\end{document}, and TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ti{O}_{2}$$\end{document} are suspended into kerosene oil thus forming the combination Ag-Cu-TiO2/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ag-Cu-Ti{O}_{2 }/$$\end{document}Kerosene oil. First, the boundary conditions and the flow and heat transfer equations are made dimensionless using appropriate non-dimensional conversions. The numerical solutions are then obtained using the RKF45 method along with Shooting technique. The repercussion of various parameters such as Grashof number (Gr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Gr)$$\end{document}, Eckert number (Ec)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ec)$$\end{document}, Volume fraction (phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi )$$\end{document}, Permiability parameter (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K)$$\end{document}, Hall parameter (Ha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ha)$$\end{document} and Slip parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\alpha \right)$$\end{document} on the velocity as well as temperature profile are visualized through the graphical records, Comparative analyses, accompanied by graphical representations, are conducted for both two types of combined nanofluids: ternary and hybrid. Also it is spotted where the ternary hybrid nanofluid has a better heat conduction compare to hybrid nanofluid (Ag-Cu-TiO2/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ag-Cu-Ti{O}_{2 }/$$\end{document}Kerosene oil) and in comparison to the hybrid nanofluid (Ag-Cu/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ag-Cu /$$\end{document}Kerosene oil). The ternary hybrid nanofluid is found to produce more entropy when compare to hybrid nanofluid. Entropy increases with increasing values of Eckert numbr (Ec)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ec)$$\end{document} and permeability (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K)$$\end{document}. The results aid in designing advanced cooling systems for electronics, biomedical devices, and microfluidic technologies.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel [J].
Arabpour, Abedin ;
Karimipour, Arash ;
Toghraie, Davood ;
Akbari, Omid Ali .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 131 (03) :2975-2991
[2]   The effect of geometrical and flow parameters on mixed convection of developing flow in vertical and inclined microchannels [J].
Baheri, Sima ;
Falaki, Seyedeh Zobeydeh ;
Gharraei, Reza .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2013, 227 (09) :1956-1964
[3]  
Buonomo B, 2008, HEAT TRANSF SUMM C, V48470, P613
[4]   A boundary layer analysis for entrance region heat transfer in vertical microchannels within the slip flow regime [J].
Chakraborty, Suman ;
Som, S. K. ;
Rahul .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (11-12) :3245-3250
[5]   Rheological behaviour of nanofluids [J].
Chen, Haisheng ;
Ding, Yulong ;
Tan, Chunqing .
NEW JOURNAL OF PHYSICS, 2007, 9
[6]  
Choi S. U. S., P 1995 ASME INT MECH, P99, DOI DOI 10.1115/1.1532008
[7]  
Choi SB., 1991, ASME DSC, V32, P123
[8]   Combined Conduction-Convection-Radiation Heat Transfer of Slip Flow Inside a Micro-Channel Filled with a Porous Material [J].
Dehghan, Maziar ;
Mahmoudi, Yasser ;
Valipour, Mohammad Sadegh ;
Saedodin, Seyfolah .
TRANSPORT IN POROUS MEDIA, 2015, 108 (02) :413-436
[9]   Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel [J].
Gireesha, B. J. ;
Srinivasa, C. T. ;
Shashikumar, N. S. ;
Macha, Madhu ;
Singh, J. K. ;
Mahanthesh, B. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2019, 233 (05) :1173-1184
[10]   Mixed convective boundary layer flow over a vertical cylinder embedded in a porous medium saturated with a nanofluid [J].
Gorla, R. S. R. ;
Hossain, Anwar .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (08) :1393-1405