Forecasting geothermal temperature in western Yemen with Bayesian-optimized machine learning regression models

被引:1
作者
Al-Fakih, Abdulrahman [1 ]
Al-khudafi, Abbas [2 ]
Koeshidayatullah, Ardiansyah [1 ]
Kaka, Sanlinn [1 ]
Al-Gathe, Abdelrigeeb [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Dhahran 31261, Saudi Arabia
[2] Emirates Int Univ, Fac Engn & IT, Oil & Gas Engn Dept, Hadda St, Sanaa, Yemen
[3] Hadhramout Univ, Fac Engn & Petr, Dept Petr Engn, Al Mukalla, Yemen
关键词
Machine learning; Geothermal temperature forecasting; Renewable energy; Optimization; Yemen; ARTIFICIAL NEURAL-NETWORKS; PREDICTION; HYDROGEN;
D O I
10.1186/s40517-024-00324-3
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Geothermal energy is a sustainable resource for power generation, particularly in Yemen. Efficient utilization necessitates accurate forecasting of subsurface temperatures, which is challenging with conventional methods. This research leverages machine learning (ML) to optimize geothermal temperature forecasting in Yemen's western region. The data set, collected from 108 geothermal wells, was divided into two sets: set 1 with 1402 data points and set 2 with 995 data points. Feature engineering prepared the data for model training. We evaluated a suite of machine learning regression models, from simple linear regression (SLR) to multi-layer perceptron (MLP). Hyperparameter tuning using Bayesian optimization (BO) was selected as the optimization process to boost model accuracy and performance. The MLP model outperformed others, achieving high R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {R}<^>{2}$$\end{document} values and low error values across all metrics after BO. Specifically, MLP achieved R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {R}<^>{2}$$\end{document} of 0.999, with MAE of 0.218, RMSE of 0.285, RAE of 4.071%, and RRSE of 4.011%. BO significantly upgraded the Gaussian process model, achieving an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {R}<^>{2}$$\end{document} of 0.996, a minimum MAE of 0.283, RMSE of 0.575, RAE of 5.453%, and RRSE of 8.717%. The models demonstrated robust generalization capabilities with high R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {R}<^>{2}$$\end{document} values and low error metrics (MAE and RMSE) across all sets. This study highlights the potential of enhanced ML techniques and the novel BO in optimizing geothermal energy resource exploitation, contributing significantly to renewable energy research and development.
引用
收藏
页数:29
相关论文
共 59 条
[11]  
[Anonymous], 1998, Wiley Series in Probability and Statistics, DOI DOI 10.1002/9781118625590
[12]   Machine learning enhancement of thermal response tests for geothermal potential evaluations at site and regional scales [J].
Bourhis, Paul ;
Cousin, Benoit ;
Loria, Alessandro F. Rotta ;
Laloui, Lyesse .
GEOTHERMICS, 2021, 95
[13]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[14]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[15]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[16]   Surrogate-assisted level-based learning evolutionary search for geothermal heat extraction optimization [J].
Chen, Guodong ;
Jiao, Jiu Jimmy ;
Jiang, Chuanyin ;
Luo, Xin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
[17]  
Degen D, 2022, EGU GEN ASSEMBLY
[18]   Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning [J].
Duplyakin, Dmitry ;
Beckers, Koenraad F. ;
Siler, Drew L. ;
Martin, Michael J. ;
Johnston, Henry E. .
ENERGIES, 2022, 15 (03)
[19]   Smart predictive viscosity mixing of CO2-N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage [J].
Ewees, Ahmed A. ;
Thanh, Hung Vo ;
Al-qaness, Mohammed A. A. ;
Abd Elaziz, Mohamed ;
Samak, Ahmed H. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02)
[20]  
Gordon A.D., 1984, CLASSIFICATION REGRE, V40, P874