Report on the complete organelle genomes of Orobanche Filicicola Nakai ex Hyun, Y. S. Lim & H. C. Shin (Orobanchaceae): insights from comparison with Orobanchaceae plant genomes

被引:0
作者
Kim, Sang-Chul [1 ]
Kang, Eun Su [1 ]
Kim, Tae-Hee [1 ]
Choi, Ye-Rim [1 ]
Kim, Hyuk-Jin [1 ]
机构
[1] Korea Natl Arboretum, Div Forest Biodivers, 509 Gwangneungsumogwon Ro, Pocheon Si 11186, Gyeonggi Do, South Korea
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
关键词
Organelle genome; Orobanche Filicicola; Orobanchaceae; Phylogenomic; COMPLETE CHLOROPLAST GENOME; MITOCHONDRIAL GENOME; SEQUENCE; MECHANISMS; LAMIALES;
D O I
10.1186/s12864-025-11298-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundOrobanche is a parasitic plant distributed in the temperate zone of Northern Hemisphere, with approximately 200 species found worldwide. In the Republic of Korea, two species of Orobanche, namely O. coerulescens Stephan ex Willd. and O. filicicola Nakai ex Hyun, Y. S. Lim & H. C. Shin, are present, with O. filicicola being endemic. Genome analysis of this species has not yet been performed, and characterizing its complete organelle genome will provide valuable insights into the phylogeny and genome evolution of parasitic plants.ResultsThe chloroplast and mitochondrial genomes were analyzed, revealing distinct characteristics. The chloroplast genome is 91,529 bp long with a GC content of 33.6%, containing 33 protein-coding, 30 tRNA, and 4 rRNA genes. In contrast, the mitochondrial genome is 1,058,991 bp long with a GC content of 45.5%, featuring 31 protein-coding, 16 tRNA, and 3 rRNA genes. The mitochondrial genome has over three times more simple sequence repeats and longer long repeats than the chloroplast genome. Analysis of synonymous codon usage in protein-coding genes from nine Orobanchaceae species revealed significant differences between chloroplasts and mitochondria, with codons ending in A or T exhibiting higher coding rates. Ka/Ks ratio calculations indicated that psbI and atpB had the smallest and largest ratios in chloroplasts, respectively, while ccmFC was identified as the only gene under positive selection in mitochondria genomes. Sequence alignment identified 30 homologous fragments between the two genomes, totaling 7,247 bp. Comparison of O. filicicola's chloroplast genome with related species showed gene loss and conserved inverted repeat sequences. Numerous homologous collinear blocks were found in mitochondrial genomes of related species, but some regions lacked homology. Phylogenetic analysis indicated identical topologies for chloroplasts and mitochondria, with Orobanchaceae forming a strong monophyletic group.ConclusionsCharacterizing the complete organelle genome of O. filicicola enabled a comprehensive analysis of the Orobanchaceae organelle genome, providing important baseline data for its structure and evolution.
引用
收藏
页数:14
相关论文
共 65 条
  • [11] Complete chloroplast genome of Asarum chungbuensis (CS Yook & JG Kim) BU Oh 2005 (Aristolochiaceae), a Korean endemic species
    Choi, Ye-Rim
    Kim, Sang-Chul
    Kim, Tae-Hee
    Ha, Young-Ho
    Kim, Hyuk-Jin
    [J]. MITOCHONDRIAL DNA PART B-RESOURCES, 2024, 9 (08): : 1005 - 1009
  • [12] A checklist of endemic plants on the Korean Peninsula II
    Chung, Gyu Young
    Jang, Hyun-Do
    Chang, Kae Sun
    Choi, Hyeok Jae
    Kim, Young-Soo
    Kim, Hyuk-Jin
    Son, Dong Chan
    [J]. KOREAN JOURNAL OF PLANT TAXONOMY, 2023, 53 (02): : 79 - 101
  • [13] Sequence and comparative analysis of the maize NB mitochondrial genome
    Clifton, SW
    Minx, P
    Fauron, CMR
    Gibson, M
    Allen, JO
    Sun, H
    Thompson, M
    Barbazuk, WB
    Kanuganti, S
    Tayloe, C
    Meyer, L
    Wilson, RK
    Newton, KJ
    [J]. PLANT PHYSIOLOGY, 2004, 136 (03) : 3486 - 3503
  • [14] Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer
    Cui, Haonan
    Ding, Zhuo
    Zhu, Qianglong
    Wu, Yue
    Qiu, Boyan
    Gao, Peng
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [15] Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design
    Du, Lianming
    Zhang, Chi
    Liu, Qin
    Zhang, Xiuyue
    Yue, Bisong
    [J]. BIOINFORMATICS, 2018, 34 (04) : 681 - 683
  • [16] Graph-based models of the Oenothera mitochondrial genome capture the enormous complexity of higher plant mitochondrial DNA organization
    Fischer, Axel
    Dotzek, Jana
    Walther, Dirk
    Greiner, Stephan
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (02)
  • [17] VISTA: computational tools for comparative genomics
    Frazer, KA
    Pachter, L
    Poliakov, A
    Rubin, EM
    Dubchak, I
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : W273 - W279
  • [18] OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes
    Greiner, Stephan
    Lehwark, Pascal
    Bock, Ralph
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W59 - W64
  • [19] Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation
    Gualberto, Jose M.
    Newton, Kathleen J.
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, VOL 68, 2017, 68 : 225 - 252
  • [20] Comprehensive Analysis of the Complete Mitochondrial Genome of Rehmannia chingii: An Autotrophic Species in the Orobanchaceae Family
    Han, Ying
    Feng, Yan-Lei
    Wang, Jie
    Zhu, Shan-Shan
    Jin, Xin-Jie
    Wu, Zhi-Qiang
    Zhang, Yong-Hua
    [J]. GENES, 2024, 15 (01)