GNSS-VTEC prediction based on CNN-GRU neural network model during high solar activities

被引:0
作者
Yang, T. Y. [1 ,2 ]
Lu, J. Y. [1 ,2 ]
Yang, Y. Y. [1 ,2 ]
Hao, Y. H. [1 ,2 ]
Wang, M. [1 ,2 ]
Li, J. Y. [1 ,2 ]
Wei, G. C. [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, State Key Lab Environm Characterist & Effects Near, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Tiandu Nuist Deep Space Explorat Lab, Nanjing 210044, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GNSS-VTEC; Ionosphere; GRU; CNN; Hybrid model; IRI-2020; NeQuick2; GPS-TEC; IONOSPHERE;
D O I
10.1038/s41598-025-93628-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Total electron content (TEC), as a crucial ionospheric parameter, has impacts on electromagnetic wave propagation as well as satellite navigation and positioning, and is of great significance in space weather forecasting. Previous prediction efforts using neural network techniques have basically focused on years with relatively low solar activity. In this study, a model combining Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) network has been constructed to forecast the TEC during high solar activities from a single Global Navigation Satellite System (GNSS) receiver at Sanya in Hainan, China. The performance of the CNN-GRU model is compared with the most used empirical models, IRI and NeQuick, and two artificial intelligence models, GRU and SVM. Benefiting from CNN's superior data feature capture capability of convolutional operation, the CNN-GRU model surpasses the original GRU model not only in 1-h-ahead predictions with an RMSE of 4.28 TECU but also in 24-h forecasts, boasting a notably lower average RMSE of 6.94 TECU, undoubtedly also outperforming the remaining models, SVM, NeQuick2, and IRI2020. Furthermore, the CNN-GRU model exhibits stable and excellent performance across different months and hour of the day, even during geomagnetic storms.
引用
收藏
页数:16
相关论文
共 46 条
[1]   CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope [J].
Bhatt, Dulari ;
Patel, Chirag ;
Talsania, Hardik ;
Patel, Jigar ;
Vaghela, Rasmika ;
Pandya, Sharnil ;
Modi, Kirit ;
Ghayvat, Hemant .
ELECTRONICS, 2021, 10 (20)
[2]   The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark [J].
Bilitza, Dieter ;
Pezzopane, Michael ;
Truhlik, Vladimir ;
Altadill, David ;
Reinisch, Bodo W. ;
Pignalberi, Alessio .
REVIEWS OF GEOPHYSICS, 2022, 60 (04)
[3]   On the use of an effective ionospheric height in electron content measurement by GPS reception [J].
Birch, MJ ;
Hargreaves, JK ;
Bailey, GJ .
RADIO SCIENCE, 2002, 37 (01) :15-1
[4]  
Cander LR, 1998, ANN GEOFIS, V41, P757
[5]  
Chung JY, 2014, Arxiv, DOI arXiv:1412.3555
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]  
Drucker H, 1997, ADV NEUR IN, V9, P155
[8]   NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS [J].
Emmert, J. T. ;
Jones, M. ;
Siskind, D. E. ;
Drob, D. P. ;
Picone, J. M. ;
Stevens, M. H. ;
Bailey, S. M. ;
Bender, S. ;
Bernath, P. F. ;
Funke, B. ;
Hervig, M. E. ;
Perot, K. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (10)
[9]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377
[10]   Effects of solar variability on thermosphere density from CHAMP accelerometer data [J].
Guo, Jianpeng ;
Wan, Weixing ;
Forbes, Jeffrey M. ;
Sutton, Eric ;
Nerem, R. Steven ;
Woods, T. N. ;
Bruinsma, Sean ;
Liu, Libo .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A10)