L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm convergence of IMEX BDF2 scheme with variable-step for the incompressible Navier-Stokes equations

被引:0
|
作者
Bingquan Ji [1 ]
Xuan Zhao [2 ]
机构
[1] Institute of Applied Physics and Computational Mathematics,School of Mathematics
[2] Southeast University,undefined
关键词
Incompressible Navier-Stokes equations; variable-step BDF2 method; discrete orthogonal convolution kernels; norm error estimate; 35Q30; 65M15; 65M60; 76D05;
D O I
10.1007/s11075-024-01858-0
中图分类号
学科分类号
摘要
We present an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm convergence of the implicit-explicit BDF2 scheme with variable-step for the unsteady incompressible Navier-Stokes equations with an inf-sup stable FEM for the space discretization. Under a weak step-ratio constraint 0<rk:=τk/τk-1<4.864\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_k:=\tau _k/\tau _{k-1}<4.864$$\end{document}, our error estimate is mesh-robust in the sense that it completely removes the possibly unbounded quantities, such as ΓN=∑k=1N-2max{0,rk-rk+2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _N=\sum _{k=1}^{N-2}\max \{0,r_{k}-r_{k+2}\}$$\end{document} and ΛN=∑k=1N-1(|rk-1|+|rk+1-1|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _N=\sum _{k=1}^{N-1}(|r_{k}-1|+|r_{k+1}-1|)$$\end{document} included in previous studies. In this analysis, we integrate our recent theoretical framework that employs discrete orthogonal convolution (DOC) kernels with an auxiliary Stokes problem to split the convergence analysis into two distinct parts. In the first part, we address intricate consistency error estimates for the velocity, pressure and nonlinear convection term. The resulting estimates allow us to utilize the conventional methodologies within the DOC framework to preserve spatial accuracy. In the second part, through the use of the DOC technique, we prove that the proposed variable-step BDF2 scheme is of second-order accuracy in time with respect to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm. Extensive numerical simulations coupled with an adaptive time-stepping algorithm are performed to show the accuracy and efficiency of the proposed variable-step method for the incompressible flows.
引用
收藏
页码:1917 / 1942
页数:25
相关论文
共 50 条