A simple spray drying-assisted solid-state synthesis of LiFe0.67Mn0.33PO4/C cathode material for lithium-ion batteries

被引:2
作者
Fang, Zijun [1 ,5 ]
Fang, Junjie [3 ]
Hu, Guorong [1 ]
Cao, Yanbing [1 ]
Li, Huan [1 ]
Fu, Quanjun [4 ]
Bai, Ke [1 ,2 ]
Peng, Zhongdong [1 ]
Du, Ke [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Jiangxi Anchi New Energy Technol Co Ltd, Shangrao 334113, Peoples R China
[3] Hunan Prov Geol Testing Ctr, Changsha 410007, Peoples R China
[4] Sichuan Lomon Phosphorus Chem Ind Ltd, Mianzhu 618209, Peoples R China
[5] Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium iron manganese phosphate; Lithium-ion battery; Carbon coating; Spray drying; ELECTROCHEMICAL PERFORMANCE; LIFEPO4; COMPOSITE; MICROSPHERES;
D O I
10.1007/s11581-025-06130-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple and scalable synthesis route for LiFe0.67Mn0.33PO4/C cathode material using spray drying combined with high-temperature solid phase technology was developed. With Li3PO4 as the lithium source and cost-effective Mn3O4 replacing part of the iron, this process is compatible with the industrial production line of LiFePO4. X-ray diffraction (XRD) confirmed that the synthesized material exhibited a single-phase olivine structure with a space group of Pnma. Scanning electron microscopy (SEM) revealed a spherical morphology. The synthesized material exhibits excellent rate and cycling performance under the low-grain micro-strain and conductive carbon network structure. Electrochemical testing demonstrated initial discharge capacities of 164, 163, 160, 157, 150, and 128 mAh g-1 at rates of 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively. Moreover, 96.16% of the capacity is retained after 200 cycles at 1C. This approach offers a viable pathway for the preparation of LiFe1-xMnxPO4/C positive electrode materials with high energy density and high rate performance.
引用
收藏
页码:3199 / 3208
页数:10
相关论文
共 38 条
[1]   Synthesis and characterization of LiFe1-xMnxPO4 (x = 0.25, 0.50, 0.75) lithium ion battery cathode synthesized via a melting process [J].
Ben Fredj, Elaa ;
Rousselot, Steeve ;
Danis, Laurence ;
Bibienne, Thomas ;
Gauthier, Michel ;
Liang, Guoxian ;
Dolle, Mickael .
JOURNAL OF ENERGY STORAGE, 2020, 27
[2]   LiFe0.5Mn0.5PO4/C prepared using a novel colloidal route as a cathode material for lithium batteries [J].
Dhaybi, Sana ;
Marsan, Benoit .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 :189-196
[3]   Electrochemical features of LiMnPO4 olivine prepared by sol-gel pathway [J].
Di Lecce, Daniele ;
Hu, Tao ;
Hassoun, Jusef .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 :730-737
[4]   A Facile Way To Synthesize Carbon-Coated LiMn0.7Fe0.3PO4/Reduced Graphene Oxide Sandwich-Structured Composite for Lithium-Ion Batteries [J].
Ding, Dong ;
Maeyoshi, Yuta ;
Kubota, Masaaki ;
Wakasugi, Jungo ;
Kanamura, Rkiyoshi ;
Abe, Hidetoshi .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :1727-+
[5]   The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law [J].
Humphreys, C. J. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 :45-50
[6]   Defects in Hydrothermally Synthesized LiFePO4 and LiFe1-xMnxPO4 Cathode Materials [J].
Jensen, Kirsten M. O. ;
Christensen, Mogens ;
Gunnlaugsson, Haraldur P. ;
Lock, Nina ;
Bojesen, Espen D. ;
Proffen, Thomas ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2282-2290
[7]   Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials [J].
Lee, Jinhyuk ;
Kitchaev, Daniil A. ;
Kwon, Deok-Hwang ;
Lee, Chang-Wook ;
Papp, Joseph K. ;
Liu, Yi-Sheng ;
Lun, Zhengyan ;
Clement, Raphaele J. ;
Shi, Tan ;
McCloskey, Bryan D. ;
Guo, Jinghua ;
Balasubramanian, Mahalingam ;
Ceder, Gerbrand .
NATURE, 2018, 556 (7700) :185-+
[8]   CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries [J].
Li, Jianlong ;
Wang, Yan ;
Wu, Jinhua ;
Zhao, Hang ;
Liu, Heng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 :864-872
[9]   Electrochemical properties of LiMn0.4Fe0.6PO4 with polyimide-based gel polymer electrolyte for high safety and improvement of rate capability [J].
Lim, Ji-Eun ;
Oh, Min-Suk ;
Ahn, Jou-Hyeon ;
Kim, Jae-Kwang .
ELECTROCHIMICA ACTA, 2017, 238 :107-111
[10]   First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect [J].
Lv, Zhi ;
Li, Minglin ;
Lin, Junxiong ;
Luo, Jing ;
Wu, Bo ;
Hong, Ruoyu ;
Cao, Shan Cecilia .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (02) :577-587