A comprehensive study on numerical homogenization of re-entrant honeycomb lattice and analytical model assessment

被引:0
作者
Das, Rajnandini [1 ]
Kumar, Gurunathan Saravana [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
关键词
Re-entrant honeycomb lattice; Homogenization; Elastic properties; Finite element method; EFFECTIVE ELASTIC PROPERTIES; FINITE-ELEMENT; TRANSVERSE-SHEAR; DEFORMATION; DESIGN;
D O I
10.1007/s10999-024-09732-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Re-entrant honeycomb lattice structures offer significant advantages, such as a high strength-to-weight ratio, superior energy absorption capabilities, and efficient material usage. However, for design optimization, the computational challenges posed by simulating extensive structures featuring lattice cells demand an exponential increase in degrees of freedom, inevitably prolonging computational time. The present work addresses some of the challenges in simulating these structures by employing numerical homogenization and investigating the effective elastic properties, aiming to reduce computational costs while maintaining accuracy. The homogenization approach is validated using experiments on lattice structures made in polymer. The study also evaluates the applicability of existing analytical models by comparing their predictions with numerical homogenization results. A comprehensive analysis considering the structural parameters, namely re-entrant angle (theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}) and relative density (rho rel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\text {rel}}$$\end{document}), is presented to understand the prediction accuracy of different analytical models. Both uncertainty and sensitivity analyses were conducted to quantify the influence of these structural parameters on the effective properties and to assess the variability due to probable geometric uncertainties introduced in manufacturing. Additionally, the influence of cell density on the homogenization model's accuracy is also examined. The findings reveal good agreement between the lattice simulation, the homogenized model, and the experimental result within the linear elastic limit. The study infers that amongst the analytical models, Malek's model is highly accurate for predicting E11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}$$\end{document}, E33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{33}$$\end{document}, and Poisson's ratio mu 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{12}$$\end{document} for higher theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} and up to 30% rho rel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\text {rel}}$$\end{document} but shows significant deviations for G12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{12}$$\end{document}, G23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{23}$$\end{document}, and mu 23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{23}$$\end{document}, necessitating numerical homogenization for higher accuracy beyond these ranges. The uncertainty analysis indicates that elastic moduli such as E11/Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}/E_{s}$$\end{document} and E33/Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{33}/E_{s}$$\end{document} exhibit the highest sensitivity to variations in strut thickness and angle, highlighting the need for precise manufacturing control to mitigate variability in effective elastic properties. The sensitivity analysis revealed that strut thickness (t) significantly influences the elastic and shear moduli, while the interaction of theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} and t plays a crucial role in determining Poisson's ratios for the auxetic honeycomb lattice. Additionally, numerical homogenization effectively predicts the elastic properties of re-entrant honeycomb structures with higher accuracy and lower computational costs. This comprehensive analysis enhances the understanding and practical application of both analytical and numerical methods in lattice structure design.
引用
收藏
页码:181 / 207
页数:27
相关论文
共 47 条
  • [1] Developing an Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and Horizontal Struts
    Alwattar, Tahseen A.
    Mian, Ahsan
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2020, 4 (02):
  • [2] Ameen M., 2005, Computational elasticity: theory of elasticity and finite and boundary element methods
  • [3] Ashby M. F., 1997, CELLULAR SOLIDS STRU, P175, DOI [10.1017/CBO9781139878326, DOI 10.1017/CBO9781139878326]
  • [4] Barbero E.J., 2023, Finite element analysis of composite materials using abaqus, DOI [10.1201/9781003108153, DOI 10.1201/9781003108153]
  • [5] Carneiro V.H., 2018, Science and Technology of Materials, V30, P8, DOI DOI 10.1016/J.STMAT.2018.01.003
  • [6] A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties
    Catapano, Anita
    Montemurro, Marco
    [J]. COMPOSITE STRUCTURES, 2014, 118 : 664 - 676
  • [7] Bending deformation of honeycomb consisting of regular hexagonal cells
    Chen, D. H.
    [J]. COMPOSITE STRUCTURES, 2011, 93 (02) : 736 - 746
  • [8] Numerical and experimental analysis of the structural performance of AM components built by fused filament fabrication
    Dialami, Narges
    Chiumenti, Michele
    Cervera, Miguel
    Rossi, Riccardo
    Chasco, Uxue
    Domingo, Miquel
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2021, 17 (01) : 225 - 244
  • [9] Effective elastic properties of auxetic microstructures: anisotropy and structural applications
    Dirrenberger, Justin
    Forest, Samuel
    Jeulin, Dominique
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2013, 9 (01) : 21 - 33
  • [10] The fracture toughness of composite laminates with a negative Poisson's ratio
    Donoghue, J. P.
    Alderson, K. L.
    Evans, K. E.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09): : 2011 - 2017