Tumor-associated macrophages/C-X-C motif chemokine ligand 1 promotes breast cancer autophagy-mediated chemoresistance via IGF1R/STAT3/HMGB1 signaling

被引:3
作者
Yang, Bowen [1 ,2 ,3 ]
Li, Guanzhi [3 ]
Wang, Shengqi [1 ,2 ,4 ,5 ]
Zheng, Yifeng [1 ,2 ,4 ]
Zhang, Juping [1 ,2 ,4 ]
Pan, Bo [1 ,2 ]
Wang, Neng [3 ,4 ]
Wang, Zhiyu [1 ,2 ,4 ,5 ]
机构
[1] Guangzhou Univ Chinese Med, Affiliated Hosp 2, State Key Lab Dampness Syndrome Chinese Med, Chinese Med Guangdong Lab, Guangzhou, Peoples R China
[2] Guangzhou Univ Chinese Med, Breast Dis Specialist Hosp, Guangdong Prov Hosp Chinese Med, Clin Coll 2, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou Univ Chinese Med, Res Ctr Basic Integrat Med, Sch Basic Med Sci, Guangzhou, Guangdong, Peoples R China
[4] Guangdong Prov Acad Chinese Med Sci, Guangdong Prov Hosp Chinese Med, Guangdong Prov Key Lab Clin Res Tradit Chinese Med, Guangzhou, Peoples R China
[5] Guangzhou Univ Chinese Med, Guangdong Hong Kong Macau Joint Lab Chinese Med &, Guangzhou, Peoples R China
来源
CELL DEATH & DISEASE | 2024年 / 15卷 / 10期
基金
中国国家自然科学基金;
关键词
IGF-1; RECEPTOR; CXCL1; ACTIVATION; EXPRESSION; CXCR2; CELLS; STAT3;
D O I
10.1038/s41419-024-07123-5
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Autophagy-mediated chemoresistance is the core mechanism for therapeutic failure and poor prognosis in breast cancer. Breast cancer chemotherapy resistance is believed to be influenced by tumor-associated macrophages (TAMs), by which C-X-C motif chemokine ligand 1 (CXCL1) is the most abundant cytokine secreted. Yet, its role in mediating autophagy-related chemoresistance is still unknown. This study aimed to explore the molecular mechanisms by which TAMs/CXCL1 induced autophagy-mediated chemoresistance in breast cancer. It was found that TAMs/CXCL1 promoted chemoresistance of breast cancer cells through autophagy activation in vitro, and CXCL1 silence could enhance the chemosensitivity of paclitaxel-resistant breast cancer cells via autophagy inhibition. A high-throughput quantitative PCR chip and subsequent target validation showed that CXCL1 induced autophagy-mediated chemoresistance by inhibiting VHL-mediated IGF1R ubiquitination. The elevated IGF1R then promoted STAT3/HMGB1 signaling to facilitate autophagy. Additionally, TAMs/CXCL1 silence improved paclitaxel chemosensitivity by suppressing autophagy in breast cancer mice xenografts, and clinical studies further linked CXCL1 to IGF1R/HMGB1 signaling, as well as shorter free survival of recurrence. Taken together, these results not only uncover the crucial role of TAMs/CXCL1 signaling in mediating breast cancer chemoresistance through enhancing autophagy, but also shed novel light on the molecular mechanism of IGF1R/STAT3/HMGB1 pathway in regulating autophagy and its impact on cancer prognosis.
引用
收藏
页数:15
相关论文
共 50 条
[1]   A CXCL1 Paracrine Network Links Cancer Chemoresistance and Metastasis [J].
Acharyya, Swarnali ;
Oskarsson, Thordur ;
Vanharanta, Sakari ;
Malladi, Srinivas ;
Kim, Juliet ;
Morris, Patrick G. ;
Manova-Todorova, Katia ;
Leversha, Margaret ;
Hogg, Nancy ;
Seshan, Venkatraman E. ;
Norton, Larry ;
Brogi, Edi ;
Massague, Joan .
CELL, 2012, 150 (01) :165-178
[2]   Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma [J].
Alafate, Wahafu ;
Li, Xiaodong ;
Zuo, Jie ;
Zhang, Hua ;
Xiang, Jianyang ;
Wu, Wei ;
Xie, Wanfu ;
Bai, Xiaobin ;
Wang, Maode ;
Wang, Jia .
CNS NEUROSCIENCE & THERAPEUTICS, 2020, 26 (04) :475-485
[3]   Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition [J].
Antoon, James W. ;
Nitzchke, Ashley M. ;
Martin, Elizabeth C. ;
Rhodes, Lyndsay V. ;
Nam, Seungyoon ;
Wadsworth, Scott ;
Salvo, Virgilo A. ;
Elliott, Steven ;
Collins-Burow, Bridgette ;
Nephew, Kenneth P. ;
Burow, Matthew E. .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2013, 42 (04) :1139-1150
[4]   Mechanisms of Multidrug Resistance in Cancer Chemotherapy [J].
Bukowski, Karol ;
Kciuk, Mateusz ;
Kontek, Renata .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (09)
[5]   Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy [J].
Chen, Hong-Tao ;
Liu, Hao ;
Mao, Min-Jie ;
Tan, Yuan ;
Mo, Xiang-Qiong ;
Meng, Xiao-Jun ;
Cao, Meng-Ting ;
Zhong, Chu-Yu ;
Liu, Yan ;
Shan, Hong ;
Jiang, Guan-Min .
MOLECULAR CANCER, 2019, 18 (1)
[6]   Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance [J].
Chen, Shizhu ;
Yang, Keni ;
Tuguntaev, Ruslan G. ;
Mozhi, Anbu ;
Zhang, Jinchao ;
Wang, Paul C. ;
Liang, Xing-Jie .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (02) :269-286
[7]   Mechanisms and context underlying the role of autophagy in cancer metastasis [J].
Dower, Christopher M. ;
Wills, Carson A. ;
Frisch, Steven M. ;
Wang, Hong-Gang .
AUTOPHAGY, 2018, 14 (07) :1110-1128
[8]   Targeting macrophages in cancer immunotherapy [J].
Duan, Zhaojun ;
Luo, Yunping .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)
[9]   Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma [J].
Fu, Xiu-Tao ;
Song, Kang ;
Zhou, Jian ;
Shi, Ying-Hong ;
Liu, Wei-Ren ;
Shi, Guo-Ming ;
Gao, Qiang ;
Wang, Xiao-Ying ;
Ding, Zhen-Bin ;
Fan, Jia .
CANCER CELL INTERNATIONAL, 2019, 19 (1)
[10]   CXCR2 Small-Molecule Antagonist Combats Chemoresistance and Enhances Immunotherapy in Triple-Negative Breast Cancer [J].
Ghallab, Alaa M. ;
Eissa, Reda A. ;
El Tayebi, Hend M. .
FRONTIERS IN PHARMACOLOGY, 2022, 13