Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder

被引:1
作者
Duffy, Callum [1 ]
Hassanshahi, Mohammad [1 ]
Jastrzebski, Marcin [1 ]
Malik, Sarah [1 ]
机构
[1] UCL, Phys & Astron, Gower St, London WC1E 6BT, England
基金
英国科学技术设施理事会;
关键词
Quantum autoencoder; High-energy physics; Anomaly detection; Magic; Entanglement entropy;
D O I
10.1007/s42484-025-00258-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-R & eacute;nyi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.
引用
收藏
页数:19
相关论文
共 74 条
[1]   Quantum anomaly detection for collider physics [J].
Alvi, Sulaiman ;
Bauer, Christian W. ;
Nachman, Benjamin .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
[2]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[3]   JUNIPR: a framework for unsupervised machine learning in particle physics [J].
Andreassen, Anders ;
Feige, Ilya ;
Frye, Christopher ;
Schwartz, Matthew D. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (02)
[4]  
Babuschkin DI, 2020, ) The DeepMind JAX Ecosystem.
[5]  
Bank Dor., AUTOENCODERS CORR, DOI DOI 10.48550/ARXIV.2003.05991
[6]   Quantum Simulation for High-Energy Physics [J].
Bauer, Christian W. ;
Davoudi, Zohreh ;
Balantekin, A. Baha ;
Bhattacharya, Tanmoy ;
Carena, Marcela ;
de Jong, Wibe A. ;
Draper, Patrick ;
El-Khadra, Aida ;
Gemelke, Nate ;
Hanada, Masanori ;
Kharzeev, Dmitri ;
Lamm, Henry ;
Li, Ying-Yin ;
Liu, Junyu ;
Lukin, Mikhail ;
Meurice, Yannick ;
Monroe, Christopher ;
Nachman, Benjamin ;
Pagano, Guido ;
Preskill, John ;
Rinaldi, Enrico ;
Roggero, Alessandro ;
Santiago, David I. ;
Savage, Martin J. ;
Siddiqi, Irfan ;
Siopsis, George ;
Van Zanten, David ;
Wiebe, Nathan ;
Yamauchi, Yukari ;
Yeter-Aydeniz, Kuebra ;
Zorzetti, Silvia .
PRX QUANTUM, 2023, 4 (02)
[7]  
Belis Vasilis, 2023, Zenodo
[8]   Higgs analysis with quantum classifiers [J].
Belis, Vasilis ;
Gonzalez-Castillo, Samuel ;
Reissel, Christina ;
Vallecorsa, Sofia ;
Combarro, Elias F. ;
Dissertori, Gunther ;
Reiter, Florentin .
25TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2021, 2021, 251
[9]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, 10.48550/arXiv.1811.04968]
[10]   QCD signatures of narrow graviton resonances in hadron colliders [J].
Bijnens, J ;
Eerola, P ;
Maul, M ;
Månsson, A ;
Sjöstrand, T .
PHYSICS LETTERS B, 2001, 503 (3-4) :341-348