Deciphering the cellular and molecular landscape of pulmonary fibrosis through single-cell sequencing and machine learning

被引:1
作者
Zhou, Yong [1 ]
Tong, Zhongkai [1 ]
Zhu, Xiaoxiao [1 ]
Wu, Chunli [1 ]
Zhou, Ying [1 ]
Dong, Zhaoxing [1 ]
机构
[1] Ningbo 2 Hosp, Dept Resp & Crit Care Med, Ningbo 315000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulmonary fibrosis; Single-cell sequencing; Machine learning; Diagnostic biomarkers; Immune cell profiling; EPIDEMIOLOGY;
D O I
10.1186/s12967-024-06031-8
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Pulmonary fibrosis is characterized by progressive lung scarring, leading to a decline in lung function and an increase in morbidity and mortality. This study leverages single-cell sequencing and machine learning to unravel the complex cellular and molecular mechanisms underlying pulmonary fibrosis, aiming to improve diagnostic accuracy and uncover potential therapeutic targets. By analyzing lung tissue samples from pulmonary fibrosis patients, we identified distinct cellular phenotypes and gene expression patterns that contribute to the fibrotic process. Notably, our findings revealed a significant enrichment of activated B cells, CD4 T cells, macrophages, and specific fibroblast subpopulations in fibrotic versus normal lung tissue. Machine learning analysis further refined these observations, resulting in the development of a diagnostic model with enhanced precision, based on key gene signatures including TMEM52B, PHACTR1, and BLVRB. Comparative analysis with existing diagnostic models demonstrates the superior accuracy and specificity of our approach. Through In vitro experiments involving the knockdown of PHACTR1, TMEM52B, and BLVRB genes demonstrated that these genes play crucial roles in inhibiting the expression of alpha-SMA and collagen in lung fibroblasts induced by TGF-beta. Additionally, knockout of the PHACTR1 gene reduced inflammation and collagen deposition in a bleomycin-induced mouse model of pulmonary fibrosis in vivo. Additionally, our study highlights novel gene signatures and immune cell profiles associated with pulmonary fibrosis, offering insights into potential therapeutic targets. This research underscores the importance of integrating advanced technologies like single-cell sequencing and machine learning to deepen our understanding of pulmonary fibrosis and pave the way for personalized therapeutic strategies.
引用
收藏
页数:13
相关论文
共 33 条
  • [1] Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis
    Adams, Taylor S.
    Schupp, Jonas C.
    Poli, Sergio
    Ayaub, Ehab A.
    Neumark, Nir
    Ahangari, Farida
    Chu, Sarah G.
    Raby, Benjamin A.
    DeTullis, Giuseppe
    Januszyk, Michael
    Duan, Qiaonan
    Arnett, Heather A.
    Siddiqui, Asim
    Washko, George R.
    Homer, Robert
    Yan, Xiting
    Rosas, Ivan O.
    Kaminski, Naftali
    [J]. SCIENCE ADVANCES, 2020, 6 (28)
  • [2] Interstitial lung disease
    Antoniou, Katerina M.
    Margaritopoulos, George A.
    Tomassetti, Sara
    Bonella, Francesco
    Costabel, Ulrich
    Poletti, Venerino
    [J]. EUROPEAN RESPIRATORY REVIEW, 2014, 23 (131) : 40 - 54
  • [3] Urteaga MB, 2022, RADIOLOGIA-MADRID, V64, P227, DOI [10.1016/j.rx.7027.10.009, 10.1016/j.rxeng.2022.10.009]
  • [4] Biomarker signatures for progressive idiopathic pulmonary fibrosis
    Clynick, Britt
    Corte, Tamera J.
    Jo, Helen E.
    Stewart, Iain
    Glaspole, Ian N.
    Grainge, Christopher
    Maher, Toby M.
    Navaratnam, Vidya
    Hubbard, Richard
    Hopkins, Peter M. A.
    Reynolds, Paul N.
    Chapman, Sally
    Zappala, Christopher
    Keir, Gregory J.
    Cooper, Wendy A.
    Mahar, Annabelle M.
    Ellis, Samantha
    Goh, Nicole S.
    De Jong, Emma
    Cha, Lilian
    Tan, Dino B. A.
    Leigh, Lucy
    Oldmeadow, Christopher
    Walters, E. Haydn
    Jenkins, R. Gisli
    Moodley, Yuben
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 59 (03)
  • [5] Acute Exacerbation of Idiopathic Pulmonary Fibrosis An International Working Group Report
    Collard, Harold R.
    Ryerson, Christopher J.
    Corte, Tamera J.
    Jenkins, Gisli
    Kondoh, Yasuhiro
    Lederer, David J.
    Lee, Joyce S.
    Maher, Toby M.
    Wells, Athol U.
    Antoniou, Katerina M.
    Behr, Juergen
    Brown, Kevin K.
    Cottin, Vincent
    Flaherty, Kevin R.
    Fukuoka, Junya
    Hansell, David M.
    Johkoh, Takeshi
    Kaminski, Naftali
    Kim, Dong Soon
    Kolb, Martin
    Lynch, David A.
    Myers, Jeffrey L.
    Raghu, Ganesh
    Richeldi, Luca
    Taniguchi, Hiroyuki
    Martinez, Fernando J.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 194 (03) : 265 - 275
  • [6] An explainable machine learning-driven proposal of pulmonary fibrosis biomarkers
    Fanidis, Dionysios
    Pezoulas, Vasileios C.
    Fotiadis, Dimitrios, I
    Aidinis, Vassilis
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 2305 - 2315
  • [7] Idiopathic pulmonary fibrosis: Current and future treatment
    Glass, Daniel S.
    Grossfeld, David
    Renna, Heather A.
    Agarwala, Priya
    Spiegler, Peter
    DeLeon, Joshua
    Reiss, Allison B.
    [J]. CLINICAL RESPIRATORY JOURNAL, 2022, 16 (02) : 84 - 96
  • [8] Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets
    Hewlett, Justin C.
    Kropski, Jonathan A.
    Blackwell, Timothy S.
    [J]. MATRIX BIOLOGY, 2018, 71-72 : 112 - 127
  • [9] Towards Treatable Traits for Pulmonary Fibrosis
    Hoffman, Thijs W.
    Grutters, Jan C.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [10] Radiation induced apoptosis and pulmonary fibrosis: curcumin an effective intervention?
    Johnson, Shilpa
    Shaikh, Sadiya B.
    Muneesa, Fatheema
    Rashmi, Barki
    Bhandary, Yashodhar P.
    [J]. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2020, 96 (06) : 709 - 717