Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography

被引:0
作者
Zeng, Lu [1 ]
Wen, Li [2 ]
Jing, Yang [3 ]
Xu, Jing-xu [4 ]
Huang, Chen-cui [4 ]
Zhang, Dong [2 ]
Wang, Guang-xian [1 ]
机构
[1] Chongqing Med Univ, Banan Hosp, Dept Radiol, Chongqing 401320, Peoples R China
[2] Army Med Univ, Xinqiao Hosp, Dept Radiol, Affiliated Hosp 2, Chongqing 400037, Peoples R China
[3] Huiying Med Technol Beijing, Beijing 100192, Peoples R China
[4] Beijing Deepwise & League PHD Technol Co Ltd, Dept Res Collaborat, R&D Ctr, A2 Xisanhuan North Rd, Beijing 100080, Peoples R China
来源
RADIOLOGIA MEDICA | 2025年 / 130卷 / 02期
关键词
Intracranial aneurysms; Computed tomography angiography; Deep learning; Convolutional neural network; Stability; UNRUPTURED CEREBRAL ANEURYSMS; SUBARACHNOID HEMORRHAGE; CT ANGIOGRAPHY; RISK; RUPTURE; PREDICTION; SCORE; DIAGNOSIS;
D O I
10.1007/s11547-024-01939-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeAssessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (CTA) images.MethodsThe clinical data of 1041 patients with 1227 aneurysms were retrospectively analyzed from August 2011 to May 2021. Patients with aneurysms were divided into unstable (ruptured, evolving and symptomatic aneurysms) and stable (fortuitous, nonevolving and asymptomatic aneurysms) groups and randomly divided into training (833 patients with 991 aneurysms) and internal validation (208 patients with 236 aneurysms) sets. One hundred and ninety-seven patients with 229 aneurysms from another hospital were included in the external validation set. Six models based on a convolutional neural network (CNN) or logistic regression were constructed on the basis of clinical, morphological and deep learning (DL) features. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to evaluate the discriminating ability of the models.ResultsThe AUCs of Models A (clinical), B (morphological) and C (DL features from the CTA image) in the external validation set were 0.5706, 0.9665 and 0.8453, respectively. The AUCs of Model D (clinical and DL features), Model E (clinical and morphological features) and Model F (clinical, morphological and DL features) in the external validation set were 0.8395, 0.9597 and 0.9696, respectively.ConclusionsThe CNN-based DLM, which integrates clinical, morphological and DL features, outperforms other models in predicting IA stability. The DLM has the potential to assess IA stability and support clinical decision-making.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 36 条
[1]   ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms [J].
Backes, Daan ;
Rinkel, Gabriel J. E. ;
Greving, Jacoba P. ;
Velthuis, Birgitta K. ;
Murayama, Yuichi ;
Takao, Hiroyuki ;
Ishibashi, Toshihiro ;
Igase, Michiya ;
terbrugge, Karel G. ;
Agid, Ronit ;
Jaeaeskelaeinen, Juha E. ;
Lindgren, Antti E. ;
Koivisto, Timo ;
zu Fraunberg, Mikael von und ;
Matsubara, Shunji ;
Moroi, Junta ;
Wong, George K. C. ;
Abrigo, Jill M. ;
Igase, Keiji ;
Matsumoto, Katsumi ;
Wermer, Marieke J. H. ;
van Walderveen, Marianne A. A. ;
Algra, Ale ;
Vergouwen, Mervyn D. I. .
NEUROLOGY, 2017, 88 (17) :1600-1606
[2]   Difference in Aneurysm Characteristics Between Ruptured and Unruptured Aneurysms in Patients With Multiple Intracranial Aneurysms [J].
Backes, Daan ;
Vergouwen, Mervyn D. I. ;
Velthuis, Birgitta K. ;
van der Schaaf, Irene C. ;
Bor, A. Stijntje E. ;
Algra, Ale ;
Rinkel, Gabriel J. E. .
STROKE, 2014, 45 (05) :1299-1303
[3]   A Systematic Review of Deep-Learning Methods for Intracranial Aneurysm Detection in CT Angiography [J].
Bizjak, Ziga ;
Spiclin, Ziga .
BIOMEDICINES, 2023, 11 (11)
[4]   Machine-Learning Models: The Future of Predictive Analytics in Neurosurgery [J].
Brusko, G. Damian ;
Kolcun, John Paul G. ;
Wang, Michael Y. .
NEUROSURGERY, 2018, 83 (01) :E3-E4
[5]   Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study [J].
Chen, Guozhong ;
Lu, Mengjie ;
Shi, Zhao ;
Xia, Shuang ;
Ren, Yuan ;
Liu, Zhen ;
Liu, Xiuxian ;
Li, Zhiyong ;
Mao, Li ;
Li, Xiu Li ;
Zhang, Bo ;
Zhang, Long Jiang ;
Lu, Guang Ming .
EUROPEAN RADIOLOGY, 2020, 30 (09) :5170-5182
[6]   Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis [J].
Din, Munaib ;
Agarwal, Siddharth ;
Grzeda, Mariusz ;
Wood, David A. ;
Modat, Marc ;
Booth, Thomas C. .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (03) :262-+
[7]   European Stroke Organisation (ESO) guidelines on management of unruptured intracranial aneurysms [J].
Etminan, Nima ;
de Sousa, Diana Aguiar ;
Tiseo, Cindy ;
Bourcier, Romain ;
Desal, Hubert ;
Lindgren, Anttii ;
Koivisto, Timo ;
Netuka, David ;
Peschillo, Simone ;
Lemeret, Sabrina ;
Lal, Avtar ;
Di Vergouwen, Mervyn ;
Rinkel, Gabriel Je .
EUROPEAN STROKE JOURNAL, 2022, 7 (03) :V-V
[8]   The unruptured intracranial aneurysm treatment score A multidisciplinary consensus [J].
Etminan, Nima ;
Brown, Robert D., Jr. ;
Beseoglu, Kerim ;
Juvela, Seppo ;
Raymond, Jean ;
Morita, Akio ;
Torner, James C. ;
Derdeyn, Colin P. ;
Raabe, Andreas ;
Mocco, J. ;
Korja, Miikka ;
Abdulazim, Amr ;
Amin-Hanjani, Sepideh ;
Salman, Rustam Al-Shahi ;
Barrow, Daniel L. ;
Bederson, Joshua ;
Bonafe, Alain ;
Dumont, Aaron S. ;
Fiorella, David J. ;
Gruber, Andreas ;
Hankey, Graeme J. ;
Hasan, David M. ;
Hoh, Brian L. ;
Jabbour, Pascal ;
Kasuya, Hidetoshi ;
Kelly, Michael E. ;
Kirkpatrick, Peter J. ;
Knuckey, Neville ;
Koivisto, Timo ;
Krings, Timo ;
Lawton, Michael T. ;
Marotta, Thomas R. ;
Mayer, Stephan A. ;
Mee, Edward ;
Pereira, Vitor Mendes ;
Molyneux, Andrew ;
Morgan, Michael K. ;
Mori, Kentaro ;
Murayama, Yuichi ;
Nagahiro, Shinji ;
Nakayama, Naoki ;
Niemela, Mika ;
Ogilvy, Christopher S. ;
Pierot, Laurent ;
Rabinstein, Alejandro A. ;
Roos, Yvo B. W. E. M. ;
Rinne, Jaakko ;
Rosenwasser, Robert H. ;
Ronkainen, Antti ;
Schaller, Karl .
NEUROLOGY, 2015, 85 (10) :881-889
[9]   Application of unruptured aneurysm scoring systems to a cohort of ruptured aneurysms: are we underestimating rupture risk? [J].
Feghali, James ;
Gami, Abhishek ;
Xu, Risheng ;
Jackson, Christopher M. ;
Tamargo, Rafael J. ;
McDougall, Cameron G. ;
Huang, Judy ;
Caplan, Justin M. .
NEUROSURGICAL REVIEW, 2021, 44 (06) :3487-3498
[10]   Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies [J].
Greving, Jacoba P. ;
Wermer, Marieke J. H. ;
Brown, Robert D., Jr. ;
Morita, Akio ;
Juvela, Seppo ;
Yonekura, Masahiro ;
Ishibashi, Toshihiro ;
Torner, James C. ;
Nakayama, Takeo ;
Rinke, Gabriel J. E. ;
Algra, Ale .
LANCET NEUROLOGY, 2014, 13 (01) :59-66