Pell or Pell-Lucas numbers as concatenations of two repdigits in base b

被引:0
作者
Adedji, Kouessi Norbert [1 ]
Filipin, Alan [2 ]
Rihane, Salah Eddine [3 ]
Togbe, Alain [4 ]
机构
[1] Univ Abomey Calavi, Inst Math & Sci Phys, Abomey Calavi, Benin
[2] Univ Zagreb, Fac Civil Engn, Fra Andrije Kacica Miosica 26, Zagreb 10000, Croatia
[3] Natl Higher Sch Math Sidi Abdallah, Algiers, Algeria
[4] Purdue Univ Northwest, Dept Math & Stat, 2200 169th St, Hammond, IN 46323 USA
关键词
Pell numbers; Pell-Lucas numbers; b-repdigits; Linear forms in logarithms; Diophantine equations; Reduction method; FIBONACCI; PADOVAN;
D O I
10.1007/s13398-024-01680-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b be a positive integer such that b >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 2$$\end{document}. In this study, we prove that for a fixed b, there exists only a finite Pell and Pell-Lucas numbers as concatenations of two repdigits in base b. As a corollary, we show that the largest Pell or Pell-Lucas numbers which can be expressible as concatenations of two distinct repdigits in base b with 2 <= b <= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le b\le 10$$\end{document} are P11=5741\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{11} = 5741$$\end{document} and Q5=82,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{5}=82,$$\end{document} respectively.
引用
收藏
页数:16
相关论文
共 11 条
[1]   Padovan or Perrin numbers that are concatenations of two distinct base b repdigits [J].
Adedji, Kouessi N. ;
Dossou-yovo, Virgile ;
Rihane, Salah E. E. ;
Togbe, Alain .
MATHEMATICA SLOVACA, 2023, 73 (01) :49-64
[2]  
Adedji KN, 2023, FIBONACCI QUART, V61, P68
[3]   Fibonacci numbers which are concatenations of two repdigits [J].
Alahmadi, Adel ;
Altassan, Alaa ;
Luca, Florian ;
Shoaib, Hatoon .
QUAESTIONES MATHEMATICAE, 2021, 44 (02) :281-290
[4]  
Batte H, 2021, Arxiv, DOI arXiv:2105.08515
[5]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[6]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[7]   PADOVAN NUMBERS THAT ARE CONCATENATIONS OF TWO DISTINCT REPDIGITS [J].
Ddamulira, Mahadi .
MATHEMATICA SLOVACA, 2021, 71 (02) :275-284
[8]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[9]  
Sanchez SG, 2014, ANN MATH QUE, V38, P169, DOI 10.1007/s40316-014-0025-z
[10]  
Khinchin AY., 1963, Continued Fractions, V3