The ultra-weak discontinuous Galerkin method for time-fractional Burgers equation

被引:0
|
作者
Chen, Xiaoxiao [1 ]
Chen, Yanli [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
来源
关键词
Time-fractional Burgers equation; Ultra-weak discontinuous Galerkin method; <italic>L</italic>1 scheme; Optimal error estimate; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; DIFFUSION; CONVECTION;
D O I
10.1007/s41478-024-00862-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ultra-weak discontinuous Galerkin finite element method for a series of time-fractional Burgers equations in one dimension is proposed. The method is based on L1 difference formula in time and ultra-weak discontinuous Galerkin formula in space. By carefully selecting interface numerical fluxes, we prove that the scheme is stable and it has optimal convergence order in the standard L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} norm. Finally, two numerical examples are presented to verify our theoretical analysis.
引用
收藏
页码:795 / 817
页数:23
相关论文
共 50 条
  • [1] Error analysis for discontinuous Galerkin method for time-fractional Burgers' equation
    Maji, Sandip
    Natesan, Srinivasan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 9703 - 9717
  • [2] A Local Discontinuous Galerkin Method for Time-Fractional Burgers Equations
    Yuan, Wenping
    Chen, Yanping
    Huang, Yunqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 818 - 837
  • [3] An Ultra-weak Local Discontinuous Galerkin Method with Generalized Numerical Fluxes for the KdV-Burgers-Kuramoto Equation
    Lin, Guotao
    Zhang, Dazhi
    Li, Jia
    Wu, Boying
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [4] An Ultra-weak Discontinuous Galerkin Method for Schrödinger Equation in One Dimension
    Anqi Chen
    Fengyan Li
    Yingda Cheng
    Journal of Scientific Computing, 2019, 78 : 772 - 815
  • [5] A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 367 - 379
  • [6] An Ultra-weak Discontinuous Galerkin Method for SchrodingerEquation in One Dimension
    Chen, Anqi
    Li, Fengyan
    Cheng, Yingda
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 772 - 815
  • [7] A direct discontinuous Galerkin method for time-fractional diffusion equation with discontinuous diffusive coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    Zhang, Huili
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (09) : 1445 - 1461
  • [8] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [9] L1/Local Discontinuous Galerkin Method for the Time-Fractional Stokes Equation
    Li, Changpin
    Wang, Zhen
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (04): : 1099 - 1127
  • [10] A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition
    Huang, Chaobao
    Stynes, Martin
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 15 - 29