Measure of the Banach Limit on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}_{\boldsymbol{\infty}}\boldsymbol{(\mathbb{R})}$$\end{document}

被引:0
作者
V. A. Glazatov [1 ]
机构
[1] Keldysh Institute of Applied Mathematics,
[2] Russian Academy of Sciences,undefined
[3] Moscow Institute of Physics and Technology,undefined
关键词
invariant measure; finitely additive measure; A. Weil’s theorem; Koopman representation; Banach limit;
D O I
10.1134/S1995080224603138
中图分类号
学科分类号
摘要
引用
收藏
页码:2495 / 2501
页数:6
相关论文
共 18 条
[1]  
Glazatov V. A.(2022)Measures on a Hilbert space that are invariant under Hamiltonian flows Ufa Math. J. 14 3-22
[2]  
Sakbaev V. Zh.(2017)Averaging random walks and shift-invariant measures on Hilbert space Theor. Math. Phys. 191 473-502
[3]  
Sakbaev V. Zh.(2019)Main classes of invariant Banach limits Izv. Math. 83 124-150
[4]  
Semenov E. M.(2021)Analogs of the Lebesgue measure in spaces of sequences and classes of functions integrable with respect to these measures J. Math. Sci. (N. Y.) 252 36-42
[5]  
Sukochev F. A.(2020)Schrödinger quantization of infinite-dimensional Hamiltonian systems with non-quadratic Hamiltonian function Dokl. Math. 101 227-230
[6]  
Usachev A. S.(2023)Direct limit of shift-invariant measures on a Hilbert space Lobachevskii J. Math. 44 1998-2006
[7]  
Zavadsky D. V.(2019)Hamiltonian Feynman measures, Kolmogorov integral and infinite-dimensional pseudodifferential operators Dokl. Akad. Nauk 488 243-247
[8]  
Smolyanov O. G.(2020)Sobolev spaces of functions on a Hilbert space with a translation invariant measure and approximations of semigroups Izv. Math. 84 694-721
[9]  
Shamarov N. N.(2018)Hamiltonian approach to secondary quantization Dokl. Math. 98 571-574
[10]  
Busovikov V. M.(1980)Factorization of summability-preserving generalized limits J. London Math. Soc. 22 398-402