Mass-energy scattering criterion for double power Schrödinger equations

被引:0
作者
Duyckaerts, Thomas [1 ,2 ]
Van Tin, Phan [1 ]
机构
[1] Univ Sorbonne Paris Nord, Inst Galilee, LAGA, UMR 7539, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 32卷 / 02期
关键词
Nonlinear Schr & ouml; dinger equations; Double power nonlinearity; Profile decomposition; Stability theory; Scattering; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; SUPERCRITICAL NLS; CAUCHY-PROBLEM; QUINTIC NLS;
D O I
10.1007/s00030-025-01029-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schr & ouml;dinger equation with double power nonlinearity. We extend the scattering result in [18] for all L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-supercritical powers, specially, our results adapt to the cases of energy-supercritical nonlinearity.
引用
收藏
页数:34
相关论文
共 34 条
  • [1] Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation
    Begout, Pascal
    Vargas, Ana
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5257 - 5282
  • [2] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [3] Orbital stability vs. scattering in the cubic-quintic Schrodinger equation
    Carles, Remi
    Sparber, Christof
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (03)
  • [4] THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS
    CAZENAVE, T
    WEISSLER, FB
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) : 807 - 836
  • [5] Cazenave T., 2003, COURANT LECT NOTES M, V10
  • [6] Scattering for the mass super-critical perturbations of the mass critical nonlinear Schrodinger equations
    Cheng, Xing
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2020, 64 (01) : 21 - 48
  • [7] Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3
    Colliander, J.
    Keel, M.
    Staffilani, G.
    Takaoka, H.
    Tao, T.
    [J]. ANNALS OF MATHEMATICS, 2008, 167 (03) : 767 - 865
  • [8] The defocusing quintic NLS in four space dimensions
    Dodson, Benjamin
    Miao, Changxing
    Murphy, Jason
    Zheng, Jiqiang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 759 - 787
  • [9] Profile decomposition and scattering for general nonlinear Schrödinger equations
    Duyckaerts, Thomas
    Tin, Phan Van
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 113 - 170
  • [10] Duyckaerts T, 2008, MATH RES LETT, V15, P1233