Universality of the Hurwitz zeta-function in short intervals

被引:2
作者
Laurincikas, Antanas [1 ]
机构
[1] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2025年 / 31卷 / 01期
关键词
Hurwitz zeta-function; Limit theorem; Mean square estimate; Space of analytic functions; Universality; Weak convergence;
D O I
10.1007/s40590-024-00694-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we consider approximation of analytic functions by shifts zeta(s + i tau, alpha), s = sigma +it, of the Hurwitz zeta-function with transcendental parameter alpha, for tau is an element of [T, T+H], where T-27/82 <= H <= T-1/2. We obtain that the set of these shifts approximating a given analytic function on the strip 1/2 < sigma < 1 has a positive density. For the proof, a mean square estimate for zeta(sigma + it, alpha) with 1/2< sigma <= 7/12 in the interval [T, T+H] and a probabilistic limit theorem in the space of analytic functions are applied.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1968, Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics
[2]  
Bagchi B, 1981, THESIS INDIAN STAT I
[3]  
de la Valle-Poussin C.J., 1896, Ann. Soc. Sci. Bruxelles, V20, P183
[4]  
de la Valle-Poussin C.J., 1896, Ann. Soc. Sci, V20, P281
[5]  
de la Valle-Poussin C.J., 1896, Ann. Soc. Sci, V20, P363
[6]  
Gonek S. M., 1979, Analytic Properties of Zeta and L-Functions
[7]  
Hadamard J., 1896, C. R. Acad. Sci. Paris, V122, P1470
[8]  
Hurwitz A., 1882, Zeitschr. fur Math. und Phys., V27, P86, DOI DOI 10.1007/978-3-0348-4161-03
[9]  
Laurincikas A., 1996, LIMIT THEOREMS RIEMA
[10]   The Mean Square of the Hurwitz Zeta-Function in Short Intervals [J].
Laurincikas, Antanas ;
Siauciunas, Darius .
AXIOMS, 2024, 13 (08)