Convergence towards a local minimum by direct search methods with a covering step

被引:0
作者
Audet, Charles [1 ,2 ]
Bouchet, Pierre-Yves [1 ,2 ]
Bourdin, Loic [3 ]
机构
[1] Polytech Montreal, Math & Genie Ind, 2500 Ch Polytech, Montreal, PQ H3T 1J4, Canada
[2] GERAD, 3000 Ch Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada
[3] Univ Limoges, CNRS, XLIM Res Inst, UMR 7252, 123 Ave Albert Thomas, F-87000 Limoges, France
基金
加拿大自然科学与工程研究理事会;
关键词
Discontinuous optimization; Nonsmooth optimization; Derivative-free optimization; Direct Search Method; Convergence; Local solution;
D O I
10.1007/s11590-024-02165-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a new step to the Direct Search Method (DSM) to strengthen its convergence analysis. By design, this so-called coveringstep may ensure that, for any refined point of the sequence of incumbent solutions generated by the resulting cDSM (covering dsm), the set of all evaluated trial points is dense in a neighborhood of that refined point. We prove that this additional property guarantees that all refined points are local solutions to the optimization problem. This new result holds true even for a discontinuous objective function, under a mild assumption that we discuss in details. We also provide a practical construction scheme for the covering step that works at low additional cost per iteration. Finally, we show that the covering step may be adapted to classes of algorithms differing from the DSM.
引用
收藏
页码:211 / 231
页数:21
相关论文
共 28 条
[1]   ORTHOMADS: A DETERMINISTIC MADS INSTANCE WITH ORTHOGONAL DIRECTIONS [J].
Abramson, Mark A. ;
Audet, Charles ;
Dennis, J. E., Jr. ;
Le Digabel, Sebastien .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) :948-966
[2]   Mesh adaptive direct search algorithms for constrained optimization [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) :188-217
[3]   Analysis of generalized pattern searches [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :889-903
[4]  
Audet C., 2020, NUMERICAL NONSMOOTH
[5]  
Audet C., 2017, Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering, DOI DOI 10.1007/978-3-319-68913-5
[6]   Counterexample and an additional revealing poll step for a result of "analysis of direct searches for discontinuous functions" [J].
Audet, Charles ;
Bouchet, Pierre-Yves ;
Bourdin, Loic .
MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) :411-424
[7]   ESCAPING UNKNOWN DISCONTINUOUS REGIONS IN BLACKBOX OPTIMIZATION [J].
Audet, Charles ;
Batailly, Alain ;
Kojtych, Solene .
SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (03) :1843-1870
[8]   A PROGRESSIVE BARRIER FOR DERIVATIVE-FREE NONLINEAR PROGRAMMING [J].
Audet, Charles ;
Dennis, J. E., Jr. .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) :445-472
[9]  
Barkalov K., 2021, ADV OPTIMIZATION APP, P37
[10]   GLOBAL CONVERGENCE RATE ANALYSIS OF A GENERIC LINE SEARCH ALGORITHM WITH NOISE [J].
Berahas, A. S. ;
Cao, L. ;
Scheinberg, K. .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) :1489-1518