Microscopy and Image Analysis of Сell-Derived Decellularized Extracellular Matrix

被引:0
作者
A. E. Melik-Pashaev [1 ]
D. K. Matveeva [2 ]
S. V. Buravkov [1 ]
D. A. Atyakshin [1 ]
E. S. Kochetova [2 ]
E. R. Andreeva [3 ]
机构
[1] Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow
[2] Lomonosov Moscow State University, Moscow
[3] Patrice Lumumba Peoples’ Friendship University of Russia, Moscow
[4] Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh
基金
俄罗斯科学基金会;
关键词
cultured cells; decellularization; extracellular matrix; microscopy; morphometry;
D O I
10.1134/S1990519X25010043
中图分类号
学科分类号
摘要
Abstract: Objective: Cell-derived decellularized extracellular matrix (dcECM) is attracting increasing research interest as a key regulator of the local microenvironment. Methods: The simplicity of manufacturing, tissue specificity and absence of limitations inherent to tissue-derived decellularized extracellular matrix are determining its potential for application in regenerative medicine and tissue engineering. Results and Discussion: The present review aims to systematize the current approaches employed in dcECM microscopy, with particular focus on the visualization of vital native ECM structures. Current methods of image analysis of cel-derived dcECM are also considered. Conclusions: The authors present their own data obtained from the studies on dcECM of cultured human multipotent mesenchymal stromal cells (MSCs) as illustrations. © Pleiades Publishing, Ltd. 2025.
引用
收藏
页码:33 / 47
页数:14
相关论文
共 70 条
[1]  
Akisaka T., Nakayama M., Yoshida H., Inoue M., Ultrastructural modifications of the extracellular matrix upon calcification of growth plate cartilage as revealed by quick-freeze deep etching technique, Calcif. Tissue Int, 63, (1998)
[2]  
Assuncao M., Dehghan-Baniani D., Yiu C.H.K., Spater T., Beyer S., Blocki A., Cell-derived extracellular matrix for tissue engineering and regenerative medicine, Front. Bioeng. Biotechnol, 8, (2020)
[3]  
Aston R., Sewell K., Klein T., Lawrie G., Grondahl L., Evaluation of the impact of freezing preparation techniques on the characterisation of alginate hydrogels by cryo-SEM, Eur. Polym. J, 82, (2016)
[4]  
Atiakshin D., Buchwalow I., Tiemann M., Mast cells and collagen fibrillogenesis, Histochem. Cell Biol, 154, (2020)
[5]  
Block T., Creech J., da Rocha A.M., Marinkovic M., Ponce-Balbuena D., Jimenez-Vazquez E.N., Griffey S., Herron T.J., Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes, Sci. Rep, 10, (2020)
[6]  
Blomfield J., Farrar J.F., The fluorescent properties of maturing arterial elastin, Cardiovasc. Res, 3, (1969)
[7]  
Boudaoud A., Burian A., Borowska-Wykret D., Uyttewaal M., Wrzalik R., Kwiatkowska D., Hamant O., an ImageJ plug-in to quantify fibrillar structures in raw microscopy images, Nat. Protoc, 9, (2014)
[8]  
Bredfeldt J.S., Liu Y., Pehlke C.A., Conklin M.W., Szulczewski J.M., Inman D.R., Keely P.J., Nowak R.D., Mackie T.R., Eliceiri K.W., Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer, J. Biomed. Opt, 19, (2014)
[9]  
Chen C.L., Mahjoubfar A., Tai L.-C., Blaby I.K., Huang A., Niazi K.R., Jalali B., Deep learning in label-free cell classification, Sci. Rep, 6, (2016)
[10]  
Chou P.-H., Wang S.-T., Ma H.-L., Liu C.-L., Chang M.-C., Lee O.K.-S., Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-β1 and FGF-2, Stem Cell Res. Ther, 7, (2016)