Approximation by Modified Taylor Polynomials in the Harmonically Weighted Dirichlet Spaces

被引:1
作者
Fricain, Emmanuel [1 ]
Mashreghi, Javad [2 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59000 Lille, France
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Local Dirichlet space; Taylor polynomials; Difference quotient operator; CYCLIC VECTORS; INVARIANT SUBSPACES;
D O I
10.1007/s11785-024-01626-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a harmonically weighted Dirichlet space D mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_\mu $$\end{document}, where mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a finitely supported discrete measure, Taylor polynomials of a function f is an element of D mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in {\mathcal {D}}_\mu $$\end{document} do not necessarily converge. We show that by properly modifying a fix number of final coefficients in Taylor polynomials of f, a new sequence is created which converges to f. The number of coefficients to be modified is at most equal to the cardinality of the support of mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, a fact which was first observed in (Mashreghi and Ransford in Complex Anal Synerg 7:1-11, 2021) for the special case of cardinality one. We also show that the nth modified polynomial can be interpreted as the orthogonal projection onto the subspace of polynomials of degree n under a suitable norm on D mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_\mu $$\end{document}.
引用
收藏
页数:13
相关论文
共 22 条
[1]  
Abakumov E., 2017, Theta Ser. Adv. Math., V19, P1
[3]   On Dirichlet Spaces With a Class of Superharmonic Weights [J].
Bao, Guanlong ;
Gogus, Nihat Gokhan ;
Pouliasis, Stamatis .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (04) :721-741
[4]   CYCLIC VECTORS IN THE DIRICHLET SPACE [J].
BROWN, L ;
SHIELDS, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 285 (01) :269-304
[5]   CARLESON MEASURES AND REPRODUCING KERNEL THESIS IN DIRICHLET-TYPE SPACES [J].
Chacon, G. R. ;
Fricain, E. ;
Shabankhah, M. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (06) :847-861
[6]   CARLESON MEASURES ON DIRICHLET-TYPE SPACES [J].
Chacon, Gerardo R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1605-1615
[7]  
Chartrand R, 2003, INTEGR EQUAT OPER TH, V45, P309, DOI 10.1007/s000200300007
[8]   De Branges-Rovnyak spaces and Dirichlet spaces [J].
Chevrot, Nicolas ;
Guillot, Dominique ;
Ransford, Thomas .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (09) :2366-2383
[9]   Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)? [J].
Costara, Constantin ;
Ransford, Thomas .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) :3204-3218
[10]  
El-Fallah O, 2010, CRM PROC & LECT NOTE, V51, P133