On approximation spaces and Greedy-type bases

被引:1
作者
Berna, Pablo M. [1 ]
Chu, Hung Viet [2 ]
Hernandez, Eugenio [3 ]
机构
[1] CUNEF Univ, Dept Matemat, Madrid 28040, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Approximation spaces; Greedy bases; Thresholding greedy algorithm; BANACH; EMBEDDINGS; ALGORITHM;
D O I
10.1007/s43034-024-00397-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Chebyshev-Greedy and omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-partially greedy approximation classes and study their relation with omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-approximation spaces, where the latter are a generalization of the classical approximation spaces. The relation gives us sufficient conditions of when certain continuous embeddings imply different greedy-type properties. Along the way, we generalize a result by P. Wojtaszczyk as well as characterize semi-greedy Schauder bases in quasi-Banach spaces, generalizing a previous result by the first author.
引用
收藏
页数:39
相关论文
共 20 条
[1]   Greedy approximation for biorthogonal systems in quasi-Banach spaces [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Berna, Pablo M. ;
Wojtaszczyk, Przemyslaw .
DISSERTATIONES MATHEMATICAE, 2021, 560 :1-88
[2]  
Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733
[3]  
BENNETT C., 1988, Interpolation of Operators
[4]   The weighted property (A) and the greedy algorithm [J].
Berna, P. M. ;
Dilworth, S. J. ;
Kutzarova, D. ;
Oikhberg, T. ;
Wallis, B. .
JOURNAL OF APPROXIMATION THEORY, 2019, 248
[5]   Equivalence between almost-greedy and semi-greedy bases [J].
Berna, P. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) :218-225
[6]   On some characterizations of greedy-type bases [J].
Berna, Pablo M. ;
Chu, Hung Viet .
EXPOSITIONES MATHEMATICAE, 2022, 40 (04) :1135-1158
[7]   A note on partially-greedy bases in quasi-Banach spaces [J].
Berna, Pablo M. .
STUDIA MATHEMATICA, 2021, 259 (02) :225-239
[8]   Embeddings and Lebesgue-Type Inequalities for the Greedy Algorithm in Banach Spaces [J].
Berna, Pablo M. ;
Blasco, Oscar ;
Garrigos, Gustavo ;
Hernandez, Eugenio ;
Oikhberg, Timur .
CONSTRUCTIVE APPROXIMATION, 2018, 48 (03) :415-451
[9]   Characterization of Weight-Semi-greedy Bases [J].
Berna, Pablo Manuel .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
[10]   Approximation and Entropy Numbers of Embeddings Between Approximation Spaces [J].
Cobos, Fernando ;
Dominguez, Oscar ;
Kuehn, Thomas .
CONSTRUCTIVE APPROXIMATION, 2018, 47 (03) :453-486