On approximation spaces and Greedy-type bases

被引:1
作者
Berna, Pablo M. [1 ]
Chu, Hung Viet [2 ]
Hernandez, Eugenio [3 ]
机构
[1] CUNEF Univ, Dept Matemat, Madrid 28040, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Approximation spaces; Greedy bases; Thresholding greedy algorithm; BANACH; EMBEDDINGS; ALGORITHM;
D O I
10.1007/s43034-024-00397-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Chebyshev-Greedy and omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-partially greedy approximation classes and study their relation with omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-approximation spaces, where the latter are a generalization of the classical approximation spaces. The relation gives us sufficient conditions of when certain continuous embeddings imply different greedy-type properties. Along the way, we generalize a result by P. Wojtaszczyk as well as characterize semi-greedy Schauder bases in quasi-Banach spaces, generalizing a previous result by the first author.
引用
收藏
页数:39
相关论文
共 20 条
  • [1] Greedy approximation for biorthogonal systems in quasi-Banach spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Berna, Pablo M.
    Wojtaszczyk, Przemyslaw
    [J]. DISSERTATIONES MATHEMATICAE, 2021, 560 : 1 - 88
  • [2] Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733
  • [3] Bennett C., 1988, INTERPOLATION OPERAT
  • [4] The weighted property (A) and the greedy algorithm
    Berna, P. M.
    Dilworth, S. J.
    Kutzarova, D.
    Oikhberg, T.
    Wallis, B.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2019, 248
  • [5] Equivalence between almost-greedy and semi-greedy bases
    Berna, P. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 218 - 225
  • [6] On some characterizations of greedy-type bases
    Berna, Pablo M.
    Chu, Hung Viet
    [J]. EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 1135 - 1158
  • [7] A note on partially-greedy bases in quasi-Banach spaces
    Berna, Pablo M.
    [J]. STUDIA MATHEMATICA, 2021, 259 (02) : 225 - 239
  • [8] Embeddings and Lebesgue-Type Inequalities for the Greedy Algorithm in Banach Spaces
    Berna, Pablo M.
    Blasco, Oscar
    Garrigos, Gustavo
    Hernandez, Eugenio
    Oikhberg, Timur
    [J]. CONSTRUCTIVE APPROXIMATION, 2018, 48 (03) : 415 - 451
  • [9] Characterization of Weight-Semi-greedy Bases
    Berna, Pablo Manuel
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [10] Approximation and Entropy Numbers of Embeddings Between Approximation Spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    [J]. CONSTRUCTIVE APPROXIMATION, 2018, 47 (03) : 453 - 486