Construction of a prognostic model based on disulfidptosis-related genes and identification of CCNA2 as a novel biomarker for hepatocellular carcinoma

被引:0
作者
Wang, Tao [1 ]
Li, Wenxuan [1 ]
Wu, Yuelan [1 ]
You, Liping [1 ]
Zheng, Chao [1 ]
Zhang, Jinghao [1 ]
Qu, Lihong [2 ]
Sun, Xuehua [1 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Shuguang Hosp, Dept Liver Dis, Shanghai 201203, Peoples R China
[2] Tongji Univ, Dept Infect Dis, Shanghai East Hosp, Sch Med, Shanghai 200120, Peoples R China
基金
中国国家自然科学基金;
关键词
Hepatocellular carcinoma; Disulfidptosis-related genes; Signature; Machine learning; CCNA2; IMPACT;
D O I
10.1186/s13062-024-00569-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundDisulfidptosis, identified as an innovative form of cellular death subsequent to cuproptosis, is currently under investigation for its mechanisms in oncological contexts. In-depth analyses exploring the relationship between disulfidptosis-related genes (DRGs) and hepatocellular carcinoma (HCC) are currently limited.MethodsTranscriptomic data and clinical information were retrieved from the TCGA and GEO databases (GSE76427 and GSE54236), concentrating on the expression levels of 24 DRGs. Subsequently, multifactor and LASSO regression analyses were utilized to construct the 5-DRG prognostic signature. Immunohistochemistry (IHC) was employed to assess Cyclin A2 (CCNA2) protein expression levels. Quantitative real-time PCR (qRT-PCR) and western blot analyses were conducted to detect transcriptomic and protein expression of CCNA2-targeting short interfering RNA (siRNA). The Cell Counting Kit-8 (CCK-8) assay, EdU staining, and scratch experiments were employed to observe the proliferation and migration of hepatoma cell lines subsequent to CCNA2 inhibition.ResultsThree HCC patterns were identified, among which pattern B exhibited the the most unfavorable survival outcomes. Five DRGs (STC2, PBK, CCNA2, SERPINE1, and SLC6A1) were involved to establish the 5-DRG prognostic signature. High-risk groups (HRGs) exhibited prolonged survival durations in comparison to low-risk groups (LRGs). Both bioinformatics analyses and experimental methodologies corroborated the association of CCNA2 with poor prognosis in HCC patients. Functional studies elucidated that interference with CCNA2 significantly inhibited proliferation and migration, while simultaneously promoting apoptosis in hepatoma cells and resulting in the downregulation of epithelial-mesenchymal transition (EMT)-related protein markers.ConclusionsThe 5-DRG prognostic signature is proficient in predicting clinical outcomes, informing therapeutic strategies, and elucidating the characteristics of the immune microenvironment in HCC patients. Furthermore, this study elucidates the potential of CCNA2 as an innovative biomarker for HCC.
引用
收藏
页数:18
相关论文
共 45 条
[1]  
Bendris Nawal, 2012, Biomol Concepts, V3, P535, DOI 10.1515/bmc-2012-0027
[2]   SEDE-GPS: socio-economic data enrichment based on GPS information [J].
Sperlea, Theodor ;
Fueser, Stefan ;
Boenigk, Jens ;
Heider, Dominik .
BMC BIOINFORMATICS, 2018, 19
[3]   Management of Hepatocellular Carcinoma A Review [J].
Brown, Zachary J. ;
Tsilimigras, Diamantis I. ;
Ruff, Samantha M. ;
Mohseni, Alireza ;
Kamel, Ihab R. ;
Cloyd, Jordan M. ;
Pawlik, Timothy M. .
JAMA SURGERY, 2023, 158 (04) :410-420
[4]   SERPINE1 Overexpression Promotes Malignant Progression and Poor Prognosis of Gastric Cancer [J].
Chen, Shujia ;
Li, Yuqiao ;
Zhu, Yinghui ;
Fei, Jiayue ;
Song, Liaoyuan ;
Sun, Guoyan ;
Guo, Lianyi ;
Li, Xiaofei .
JOURNAL OF ONCOLOGY, 2022, 2022
[5]   Identification of Anoikis-Related Subgroups and Prognosis Model in Liver Hepatocellular Carcinoma [J].
Chen, Yutong ;
Huang, Weiran ;
Ouyang, Jian ;
Wang, Jingxiang ;
Xie, Zhengwei .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
[6]   TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer [J].
Chi, Ming ;
Liu, Jiao ;
Mei, Chenxue ;
Shi, Yaxing ;
Liu, Nanqi ;
Jiang, Xuefeng ;
Liu, Chang ;
Xue, Nan ;
Hong, Hong ;
Xie, Jisheng ;
Sun, Xun ;
Yin, Bo ;
Meng, Xin ;
Wang, Biao .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2022, 41 (01)
[7]   The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma [J].
Donne, Romain ;
Lujambio, Amaia .
HEPATOLOGY, 2023, 77 (05) :1773-1796
[8]   Emerging immunotherapy or HCC: A guide for hepatologists [J].
Foerster, Friedrich ;
Gairing, Simon Johannes ;
Ilyas, Sumera Irie ;
Galle, Peter Robert .
HEPATOLOGY, 2022, 75 (06) :1604-1626
[9]   The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].
Dirac M.A. ;
Safiri S. ;
Tsoi D. ;
Adedoyin R.A. ;
Afshin A. ;
Akhlaghi N. ;
Alahdab F. ;
Almulhim A.M. ;
Amini S. ;
Ausloos F. ;
Bacha U. ;
Banach M. ;
Bhagavathula A.S. ;
Bijani A. ;
Biondi A. ;
Borzì A.M. ;
Colombara D. ;
Dagnew B. ;
Daryani A. ;
Davitoiu D.V. ;
Demeke F.M. ;
Demoz G.T. ;
Do H.P. ;
Etemadi A. ;
Farzadfar F. ;
Fischer F. ;
Gebre A.K. ;
Gebremariam H. ;
Gebremichael B. ;
Ghashghaee A. ;
Ghoshal U.C. ;
Hamidi S. ;
Hasankhani M. ;
Hassan S. ;
Hay S.I. ;
Hoang C.L. ;
Hole M.K. ;
Ikuta K.S. ;
Ilesanmi O.S. ;
Irvani S.S.N. ;
James S.L. ;
Joukar F. ;
Kabir A. ;
Kassaye H.G. ;
Kavetskyy T. ;
Kengne A.P. ;
Khalilov R. ;
Khan M.U. ;
Khan E.A. ;
Khan M. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (06) :561-581
[10]   A guide to machine learning for biologists [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Moffat, Lewis ;
Jones, David T. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) :40-55