Preoperative prediction of IDH genotypes and prognosis in adult-type diffuse gliomas: intratumor heterogeneity habitat analysis using dynamic contrast-enhanced MRI and diffusion-weighted imaging

被引:1
作者
Wang, Xingrui [1 ]
Xie, Zhenhui [1 ]
Wang, Xiaoqing [2 ]
Song, Yang [3 ]
Suo, Shiteng [1 ]
Ren, Yan [4 ]
Hu, Wentao [1 ]
Zhu, Yi [1 ]
Cao, Mengqiu [1 ]
Zhou, Yan [1 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Dept Radiol, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Radiol, Shanghai 200336, Peoples R China
[3] Siemens Healthineers Ltd, MR Res Collaborat Team, Shanghai 200126, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Radiol, Shanghai 200040, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Med, Coll Hlth Sci & Technol, Shanghai 200025, Peoples R China
基金
上海市自然科学基金;
关键词
Adult-type diffuse glioma; Intratumor heterogeneity; Isocitrate dehydrogenase; Progression-free survival; Dynamic contrast-enhanced perfusion; Diffusion-weighted imaging; GLIOBLASTOMA; SURVIVAL; GRADE; TUMORS;
D O I
10.1186/s40644-025-00829-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Intratumor heterogeneity (ITH) is a key biological characteristic of gliomas. This study aimed to characterize ITH in adult-type diffuse gliomas and assess the feasibility of using habitat imaging based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to preoperatively predict isocitrate dehydrogenase (IDH) genotypes and prognosis. Methods Sixty-three adult-type diffuse gliomas with known IDH genotypes were enrolled. Volume transfer constant (K-trans) and apparent diffusion coefficient (ADC) maps were acquired from DCE-MRI and DWI, respectively. After tumor segmentation, the k-means algorithm clustered K-trans and ADC image voxels to generate spatial habitats and extract quantitative image features. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to evaluate IDH predictive performance. Multivariable logistic regression models were constructed and validated using leave-one-out cross-validation, and the contrast-enhanced subgroup was analyzed independently. Kaplan-Meier and Cox proportional hazards regression analyses were used to investigate the relationship between tumor habitats and progression-free survival (PFS) in the two IDH groups. Results Three habitats were identified: Habitat 1 (hypo-vasopermeability and hyper-cellularity), Habitat 2 (hypo-vasopermeability and hypo-cellularity), and Habitat 3 (hyper-vasopermeability). Compared to the IDH wild-type group, the IDH mutant group exhibited lower mean K-trans values in Habitats 1 and 2 (both P < 0.001), higher volume (P < 0.05) and volume percentage (pVol, P < 0.01) of Habitat 2, and lower volume and pVol of Habitat 3 (both P < 0.001). The optimal logistic regression model for IDH prediction yielded an AUC of 0.940 (95% confidence interval [CI]: 0.880-1.000), which improved to 0.948 (95% CI: 0.890-1.000) after cross-validation. Habitat 2 contributed the most to the model, consistent with the findings in the contrast-enhanced subgroup. In IDH wild-type group, pVol of Habitat 2 was identified as a significant risk factor for PFS (high- vs. low-pVol subgroup, hazard ratio = 2.204, 95% CI: 1.061-4.580, P = 0.034), with a value below 0.26 indicating a 5-month median survival benefit. Conclusions Habitat imaging employing DCE-MRI and DWI may facilitate the characterization of ITH in adult-type diffuse gliomas and serve as a valuable adjunct in the preoperative prediction of IDH genotypes and prognosis. Clinical trial number Not applicable.
引用
收藏
页数:14
相关论文
共 48 条
[21]   Multimodel habitats constructed by perfusion and/or diffusion MRI predict isocitrate dehydrogenase mutation status and prognosis in high-grade gliomas [J].
Liu, J. ;
Cong, C. ;
Zhang, J. ;
Qiao, J. ;
Guo, H. ;
Wu, H. ;
Sang, Z. ;
Kang, H. ;
Fang, J. ;
Zhang, W. .
CLINICAL RADIOLOGY, 2024, 79 (01) :e127-e136
[22]   Heterogeneity matching and IDH prediction in adult-type diffuse gliomas: a DKI-based habitat analysis [J].
Liu, Yanhao ;
Wang, Peng ;
Wang, Shaoyu ;
Zhang, Huapeng ;
Song, Yang ;
Yan, Xu ;
Gao, Yang .
FRONTIERS IN ONCOLOGY, 2023, 13
[23]   The 2021 WHO Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Wesseling, Pieter ;
Brat, Daniel J. ;
Cree, Ian A. ;
Figarella-Branger, Dominique ;
Hawkins, Cynthia ;
Ng, H. K. ;
Pfister, Stefan M. ;
Reifenberger, Guido ;
Soffietti, Riccardo ;
von Deimling, Andreas ;
Ellison, David W. .
NEURO-ONCOLOGY, 2021, 23 (08) :1231-1251
[24]   Necrotic reshaping of the glioma microenvironment drives disease progression [J].
Markwell, Steven M. ;
Ross, James L. ;
Olson, Cheryl L. ;
Brat, Daniel J. .
ACTA NEUROPATHOLOGICA, 2022, 143 (03) :291-310
[25]   Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective [J].
Mathur, Radhika ;
Wang, Qixuan ;
Schupp, Patrick G. ;
Nikolic, Ana ;
Hilz, Stephanie ;
Hong, Chibo ;
Grishanina, Nadia R. ;
Kwok, Darwin ;
Stevers, Nicholas O. ;
Jin, Qiushi ;
Youngblood, Mark W. ;
Stasiak, Lena Ann ;
Hou, Ye ;
Wang, Juan ;
Yamaguchi, Takafumi N. ;
Lafontaine, Marisa ;
Shai, Anny ;
V. Smirnov, Ivan ;
Solomon, David A. ;
Chang, Susan M. ;
Hervey-Jumper, Shawn L. ;
Berger, Mitchel S. ;
Lupo, Janine M. ;
Okada, Hideho ;
Phillips, Joanna J. ;
Boutros, Paul C. ;
Gallo, Marco ;
Oldham, Michael C. ;
Yue, Feng ;
Costello, Joseph F. .
CELL, 2024, 187 (02) :446-463.e16
[26]   World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient [J].
Maynard, John ;
Okuchi, Sachi ;
Wastling, Stephen ;
Al Busaidi, Ayisha ;
Almossawi, Ofran ;
Mbatha, Wonderboy ;
Brandner, Sebastian ;
Jaunmuktane, Zane ;
Koc, Ali Murat ;
Mancini, Laura ;
Jager, Rolf ;
Thust, Stefanie .
RADIOLOGY, 2020, 296 (01) :111-121
[27]   Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats [J].
Napel, Sandy ;
Mu, Wei ;
Jardim-Perassi, Bruna V. ;
Aerts, Hugo J. W. L. ;
Gillies, Robert J. .
CANCER, 2018, 124 (24) :4633-4649
[28]   Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity [J].
Nehama, Dean ;
Woodell, Alex S. ;
Maingi, Spencer M. ;
Hingtgen, Shawn D. ;
Dotti, Gianpietro .
NEURO-ONCOLOGY, 2023, 25 (09) :1551-1562
[29]   Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome [J].
O'Connor, James P. B. ;
Rose, Chris J. ;
Waterton, John C. ;
Carano, Richard A. D. ;
Parker, Geoff J. M. ;
Jackson, Alan .
CLINICAL CANCER RESEARCH, 2015, 21 (02) :249-257
[30]   Spatiotemporal Heterogeneity in Multiparametric Physiologic MRI Is Associated with Patient Outcomes in IDH-Wildtype Glioblastoma [J].
Park, Ji Eun ;
Kim, Ho Sung ;
Kim, NakYoung ;
Park, Seo Young ;
Kim, Young-Hoon ;
Kim, Jeong Hoon .
CLINICAL CANCER RESEARCH, 2021, 27 (01) :237-245