Preoperative prediction of IDH genotypes and prognosis in adult-type diffuse gliomas: intratumor heterogeneity habitat analysis using dynamic contrast-enhanced MRI and diffusion-weighted imaging

被引:0
作者
Wang, Xingrui [1 ]
Xie, Zhenhui [1 ]
Wang, Xiaoqing [2 ]
Song, Yang [3 ]
Suo, Shiteng [1 ]
Ren, Yan [4 ]
Hu, Wentao [1 ]
Zhu, Yi [1 ]
Cao, Mengqiu [1 ]
Zhou, Yan [1 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Dept Radiol, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Radiol, Shanghai 200336, Peoples R China
[3] Siemens Healthineers Ltd, MR Res Collaborat Team, Shanghai 200126, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Radiol, Shanghai 200040, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Med, Coll Hlth Sci & Technol, Shanghai 200025, Peoples R China
基金
上海市自然科学基金;
关键词
Adult-type diffuse glioma; Intratumor heterogeneity; Isocitrate dehydrogenase; Progression-free survival; Dynamic contrast-enhanced perfusion; Diffusion-weighted imaging; GLIOBLASTOMA; SURVIVAL; GRADE; TUMORS;
D O I
10.1186/s40644-025-00829-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Intratumor heterogeneity (ITH) is a key biological characteristic of gliomas. This study aimed to characterize ITH in adult-type diffuse gliomas and assess the feasibility of using habitat imaging based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to preoperatively predict isocitrate dehydrogenase (IDH) genotypes and prognosis. Methods Sixty-three adult-type diffuse gliomas with known IDH genotypes were enrolled. Volume transfer constant (K-trans) and apparent diffusion coefficient (ADC) maps were acquired from DCE-MRI and DWI, respectively. After tumor segmentation, the k-means algorithm clustered K-trans and ADC image voxels to generate spatial habitats and extract quantitative image features. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to evaluate IDH predictive performance. Multivariable logistic regression models were constructed and validated using leave-one-out cross-validation, and the contrast-enhanced subgroup was analyzed independently. Kaplan-Meier and Cox proportional hazards regression analyses were used to investigate the relationship between tumor habitats and progression-free survival (PFS) in the two IDH groups. Results Three habitats were identified: Habitat 1 (hypo-vasopermeability and hyper-cellularity), Habitat 2 (hypo-vasopermeability and hypo-cellularity), and Habitat 3 (hyper-vasopermeability). Compared to the IDH wild-type group, the IDH mutant group exhibited lower mean K-trans values in Habitats 1 and 2 (both P < 0.001), higher volume (P < 0.05) and volume percentage (pVol, P < 0.01) of Habitat 2, and lower volume and pVol of Habitat 3 (both P < 0.001). The optimal logistic regression model for IDH prediction yielded an AUC of 0.940 (95% confidence interval [CI]: 0.880-1.000), which improved to 0.948 (95% CI: 0.890-1.000) after cross-validation. Habitat 2 contributed the most to the model, consistent with the findings in the contrast-enhanced subgroup. In IDH wild-type group, pVol of Habitat 2 was identified as a significant risk factor for PFS (high- vs. low-pVol subgroup, hazard ratio = 2.204, 95% CI: 1.061-4.580, P = 0.034), with a value below 0.26 indicating a 5-month median survival benefit. Conclusions Habitat imaging employing DCE-MRI and DWI may facilitate the characterization of ITH in adult-type diffuse gliomas and serve as a valuable adjunct in the preoperative prediction of IDH genotypes and prognosis. Clinical trial number Not applicable.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images
    Anzalone, Nicoletta
    Castellano, Antonella
    Cadioli, Marcello
    Conte, Gian Marco
    Cuccarini, Valeria
    Bizzi, Alberto
    Grimaldi, Marco
    Costa, Antonella
    Grillea, Giovanni
    Vitali, Paolo
    Aquino, Domenico
    Terreni, Maria Rosa
    Torri, Valter
    Erickson, Bradley J.
    Caulo, Massimo
    [J]. RADIOLOGY, 2018, 287 (03) : 933 - 943
  • [2] Brain T1ρ mapping for grading and IDH1 gene mutation detection of gliomas: a preliminary study
    Cao, Mengqiu
    Ding, Weina
    Han, Xu
    Suo, Shiteng
    Sun, Yawen
    Wang, Yao
    Qu, Jianxun
    Zhang, Xiaohua
    Zhou, Yan
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2019, 141 (01) : 245 - 252
  • [3] Immune Profiling of Gliomas Reveals a Connection with IDH1/2 Mutations, Tau Function and the Vascular Phenotype
    Cejalvo, Teresa
    Gargini, Ricardo
    Segura-Collar, Berta
    Mata-Martinez, Pablo
    Herranz, Beatriz
    Cantero, Diana
    Ruano, Yolanda
    Garcia-Perez, Daniel
    Perez-Nunez, Angel
    Ramos, Ana
    Hernandez-Lain, Aurelio
    Martin-Soberon, Maria Cruz
    Sanchez-Gomez, Pilar
    Sepulveda-Sanchez, Juan M.
    [J]. CANCERS, 2020, 12 (11) : 1 - 18
  • [4] Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states
    Chaligne, Ronan
    Gaiti, Federico
    Silverbush, Dana
    Schiffman, Joshua S.
    Weisman, Hannah R.
    Kluegel, Lloyd
    Gritsch, Simon
    Deochand, Sunil D.
    Castro, L. Nicolas Gonzalez
    Richman, Alyssa R.
    Klughammer, Johanna
    Biancalani, Tommaso
    Muus, Christoph
    Sheridan, Caroline
    Alonso, Alicia
    Izzo, Franco
    Park, Jane
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    Suva, Mario L.
    Landau, Dan A.
    [J]. NATURE GENETICS, 2021, 53 (10) : 1469 - +
  • [5] Prediction of IDH Mutation Status in High-grade Gliomas Using DWI and High T1-weight DSC-MRI
    Cindil, Emetullah
    Sendur, Halit Nahit
    Cerit, Mahi Nur
    Erdogan, Nesrin
    Celebi, Filiz
    Dag, Nurullah
    Celtikci, Emrah
    Inan, Arda
    Oner, Yusuf
    Tali, Turgut
    [J]. ACADEMIC RADIOLOGY, 2022, 29 : S52 - S62
  • [6] 3D Slicer as an image computing platform for the Quantitative Imaging Network
    Fedorov, Andriy
    Beichel, Reinhard
    Kalpathy-Cramer, Jayashree
    Finet, Julien
    Fillion-Robin, Jean-Christophe
    Pujol, Sonia
    Bauer, Christian
    Jennings, Dominique
    Fennessy, Fiona
    Sonka, Milan
    Buatti, John
    Aylward, Stephen
    Miller, James V.
    Pieper, Steve
    Kikinis, Ron
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1323 - 1341
  • [7] Relationship between Apparent Diffusion Coefficients and MR Spectroscopy Findings in High-Grade Gliomas
    Gadda, Davide
    Mazzoni, Lorenzo Nicola
    Pasquini, Luca
    Busoni, Simone
    Simonelli, Paolo
    Giordano, Gian Paolo
    [J]. JOURNAL OF NEUROIMAGING, 2017, 27 (01) : 128 - 134
  • [8] The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas
    Gargini, Ricardo
    Segura-Collar, Berta
    Herranz, Beatriz
    Garcia-Escudero, Vega
    Romero-Bravo, Andres
    Nunez, Felipe J.
    Garcia-Perez, Daniel
    Gutierrez-Guaman, Jacqueline
    Ayuso-Sacido, Angel
    Seoane, Joan
    Perez-Nunez, Angel
    Sepulveda-Sanchez, Juan M.
    Hernandez-Lain, Aurelio
    Castro, Maria G.
    Garcia-Escudero, Ramon
    Avila, Jesus
    Sanchez-Gomez, Pilar
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (527)
  • [9] Quantitative Imaging in Cancer Evolution and Ecology
    Gatenby, Robert A.
    Grove, Olya
    Gillies, Robert J.
    [J]. RADIOLOGY, 2013, 269 (01) : 8 - 15
  • [10] Diffusion Weighted Imaging in Gliomas: A Histogram-Based Approach for Tumor Characterization
    Gihr, Georg
    Horvath-Rizea, Diana
    Kohlhof-Meinecke, Patricia
    Ganslandt, Oliver
    Henkes, Hans
    Haertig, Wolfgang
    Donitza, Aneta
    Skalej, Martin
    Schob, Stefan
    [J]. CANCERS, 2022, 14 (14)