Plant functional diversity shapes soil respiration response to soil moisture availability

被引:0
|
作者
Podzikowski, Laura Y. [1 ,2 ]
Billings, Sharon A. [1 ,2 ]
Bever, James D. [1 ,2 ]
机构
[1] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA
[2] Univ Kansas, Kansas Biol Survey & Ctr Ecol Res, Lawrence, KS 66045 USA
基金
美国农业部; 美国国家科学基金会;
关键词
Plant functional diversity; Soil respiration; Soil moisture; Altered precipitation; Climate change; Carbon cycle; Grassland; MICROBIAL COMMUNITIES; EFFECTS MODELS; ROOT BIOMASS; CARBON; PRECIPITATION; DROUGHT; SENSITIVITY; EXUDATION; FORESTS; CLIMATE;
D O I
10.1007/s10021-024-00946-5
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Narrowing uncertainties associated with land-atmosphere carbon (C) fluxes is critical for projecting climate futures, but large uncertainties in modeling soil respiration (RS) hinder progress. Difficulties accounting for how biological communities will respond to altered precipitation contribute to those uncertainties, but remain underexplored in situ. In a rainfall and grassland diversity manipulation experiment altering both plant richness and community composition, we measured RS monthly for four growing seasons, along with multiple physical (soil moisture and temperature) and biological drivers (aboveground, root, and microbial biomass) of RS. Relationships between plant richness and RS were dependent on plant community composition and soil moisture conditions. Elevated RS was associated with grass diversity, likely governed by enhanced soil moisture at 12 cm. Microbial biomass was the strongest independent predictor of RS. Though soil moisture was a strong predictor of RS, covariance with precipitation treatments and microbial biomass suggests it operated through multiple indirect pathways. Even after accounting for several RS drivers, plant community composition and richness still accounted for a nontrivial amount of variation in RS. This suggests that unexplored pathways associated with biological complexity (for example, microbial community composition) influence RS. Finally, altered precipitation changed diversity-RS relationships over time, suggesting that soil microbes can respond relatively rapidly to altered precipitation, perhaps due to the diversity of specialist microbes in our initial common soils. Our work demonstrates how biological complexity can interact with physical drivers and changing climates to influence RS in ways currently unaccounted for in models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of Soil Moisture on the Response of Soil Respiration to Open-Field Experimental Warming and Precipitation Manipulation
    Li, Guanlin
    Kim, Seongjun
    Han, Seung Hyun
    Chang, Hanna
    Son, Yowhan
    FORESTS, 2017, 8 (03)
  • [2] Thresholds and interactive effects of soil moisture on the temperature response of soil respiration
    Lellei-Kovacs, Eszter
    Kovacs-Lang, Edit
    Botta-Dukat, Zoltan
    Kalapos, Tibor
    Emmett, Bridget
    Beier, Claus
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2011, 47 (04) : 247 - 255
  • [3] Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase
    Zhang, Fen-Guo
    Zhang, Quan-Guo
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 98 : 180 - 185
  • [4] Soil respiration response to decade-long warming modulated by soil moisture in a boreal forest
    Liang, Guopeng
    Stefanski, Artur
    Eddy, William C.
    Bermudez, Raimundo
    Montgomery, Rebecca A.
    Hobbie, Sarah E.
    Rich, Roy L.
    Reich, Peter B.
    NATURE GEOSCIENCE, 2024, 17 (09) : 905 - 911
  • [5] Sensitivity of soil respiration to moisture and temperature
    Guntinas, M. E.
    Gil-Sotres, F.
    Leiros, M. C.
    Trasar-Cepeda, C.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2013, 13 (02): : 445 - 461
  • [6] Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture
    Averill, Colin
    Waring, Bonnie G.
    Hawkes, Christine V.
    GLOBAL CHANGE BIOLOGY, 2016, 22 (05) : 1957 - 1964
  • [7] Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau
    Bao, Xiaoying
    Zhu, Xiaoxue
    Chang, Xiaofeng
    Wang, Shiping
    Xu, Burenbayin
    Luo, Caiyun
    Zhang, Zhenhua
    Wang, Qi
    Rui, Yichao
    Cui, Xiaoying
    PLOS ONE, 2016, 11 (10):
  • [8] Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem
    Wang, B.
    Zha, T. S.
    Jia, X.
    Wu, B.
    Zhang, Y. Q.
    Qin, S. G.
    BIOGEOSCIENCES, 2014, 11 (02) : 259 - 268
  • [9] Relationships between soil respiration and soil moisture
    Cook, Freeman J.
    Orchard, Valerie A.
    SOIL BIOLOGY & BIOCHEMISTRY, 2008, 40 (05) : 1013 - 1018
  • [10] Responses of microbial community composition and respiration to soil moisture in eroded soil
    Jiao, Panpan
    Yang, Lei
    Li, Zhongwu
    Liu, Chun
    Zheng, Peng
    Tong, Di
    Chang, Xiaofeng
    Tang, Chongjun
    Xiao, Haibing
    APPLIED SOIL ECOLOGY, 2023, 181