This work aimed to investigate the removal of sulfur compounds from light kerosene using activated carbon (AC) that was treated with alkali agents (KOH and NaOH) to enhance its adsorption properties. The physicochemical properties of the as-received AC and AC/alkali agents were characterized using Fourier transform infrared spectroscopy (FTIR). To evaluate the effectiveness of the surface modifications on the adsorbents, various operating conditions were examined. The agitation speed varied between 200, 300, and 400 rpm, while the contact time ranged from 15 to 35 minutes. Additionally, different percentages of KOH (5, 10, 15%) and NaOH (5, 10, 15%) were used to assess their influence on the removal efficiency of sulfur compounds. Based on the given information, it appears that the treatment of activated carbon (AC) with alkali agents, specifically KOH and NaOH, has resulted in an increase in the specific surface areas of the AC. This increase in surface area could potentially enhance the adsorption capabilities of the AC. The results showed that AC/KOH achieved a sulfur removal efficiency of 69%, while AC/NaOH demonstrated a higher efficiency of 84%. The highest sulfur removal efficiency was achieved under specific conditions: a NaOH concentration of 4 M, agitation speed of 400 rpm, and contact time of 35 minutes. Overall, the treatment of activated carbon with alkali agents, particularly NaOH, led to increased specific surface areas and the presence of hydroxyl functional groups. The surface area of AC-treatment will be increased because the functional group formation new location in AC-support and increased the porosity, therefore the surface area will increase. The resulting composites, AC/KOH and AC/NaOH, demonstrated enhanced sulfur removal efficiency compared to other composites, with AC/NaOH showing the highest performance.