Random regression in comparison with finite-dimensional models for estimation of genetic parameters for growth traits in goats

被引:0
|
作者
Tesema, Zeleke [1 ]
Derbie, Belay [2 ]
Getachew, Tesfaye [3 ]
Meseret, Selam [4 ]
Gizaw, Solomon [4 ]
机构
[1] Debre Birhan Agr Res Ctr, POB 112, Debre Birhan, Ethiopia
[2] Sirinka Agr Res Ctr, POB 74, Woldia, Ethiopia
[3] Int Ctr Agr Res Dry Areas ICARDA, Addis Ababa, Ethiopia
[4] Int Livestock Res Inst ILRI, Addis Ababa, Ethiopia
关键词
Breeding value; Accuracy of breeding value; Genetic trend; Random regression; Reliability of breeding value; BODY-WEIGHT; VARIANCE-COMPONENTS; BEEF-CATTLE; SHEEP; BIRTH;
D O I
10.1007/s11250-025-04366-y
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The application of the random regression model in comparison with finite-dimensional models (univariate and multivariate animal models) for genetic parameter estimation of growth traits in goats was evaluated in this study. A total of 2888 body weight records from 875 animals, recorded from birth to yearling age were used. All models included direct additive genetic and maternal genetic effects as a random effect in addition to fixed effects. Random regression model (RRM) was fitted with different orders (1st - 3rd) of Legendre polynomials and accounted for both homogeneous and heterogeneous residual variance. The best-fitting RRM had a polynomial of three orders for both random effects. The direct heritability estimate obtained via RRM was moderate to high, while it varied from 0.00 +/- 0.08 to 0.36 +/- 0.10 in finite dimensional models. A lower standard error of heritability and genetic correlation estimates was observed with RRM compared to multivariate (MUV) and univariate (UNI) analysis. Likewise, high accuracy and reliability of breeding value estimates are obtained via RRM, whereas the accuracy for MUV and UNI animal models were moderate and low to moderate, respectively. Based on standard errors, accuracy, and reliability of estimates, RRM seems versatile for genetic evaluation of growth traits of goats. However, the MUV animal model is the best-fitting model, according to the information criteria values. Thus, for small and less frequently measured data set, multivariate animal model seems good. Further studies with large and frequently measured body weight data sets may help ensure random regression's applicability and differentiate it from finite-dimensional models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Comparison of random regression models for the estimation of genetic parameters in dairy goats
    Rocha Sarmento, Jose Lindenberg
    de Albuquerque, Lucia Galvao
    Torres, Robledo de Almeida
    Rodrigues, Marcelo Teixeira
    Lopes, Paulo Savio
    Reis Filho, Joao Cruz
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2008, 37 (10): : 1788 - 1796
  • [2] Estimation of genetic parameters for growth traits in Canchim cattle with finite models
    Baldi, Fernando
    de Alencar, Mauricio Mello
    de Albuquerque, Lucia Galvao
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2010, 39 (11): : 2409 - 2417
  • [3] The estimation of genetic parameters and genetic trends for growth traits in Markhoz goats
    Shirzeyli, Farhad Hosseinzadeh
    Joezy-Shekalgorabi, Sahereh
    Aminafshar, Mehdi
    Razmkabir, Mohammad
    SMALL RUMINANT RESEARCH, 2023, 218
  • [4] Estimation of Genetic Parameters of Growth Traits in Nigeria Sahelian Goats
    Otuma, Mike O.
    Osakwe, Isaac I.
    JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 2008, 7 (05): : 535 - 538
  • [5] Estimation of genetic parameters for feed efficiency traits using random regression models in dairy cattle
    Houlahan, K.
    Schenkel, F. S.
    Miglior, F.
    Jamrozik, J.
    Stephansen, R. B.
    Gonzalez-Recio, O.
    Charfeddine, N.
    Segelke, D.
    Butty, A. M.
    Stratz, P.
    VandeHaar, M. J.
    Tempelman, R. J.
    Weigel, K.
    White, H.
    Penagaricano, F.
    Koltes, J. E.
    Santos, J. E. P.
    Baldwin VI, R. L.
    Baes, C. F.
    JOURNAL OF DAIRY SCIENCE, 2024, 107 (03) : 1523 - 1534
  • [6] Estimates of genetic parameters for growth traits in Brahman cattle using random regression and multitrait models
    Bertipaglia, T. S.
    Carreno, L. O. D.
    Aspilcueta-Borquis, R. R.
    Boligon, A. A.
    Farah, M. M.
    Gomes, F. J.
    Machado, C. H. C.
    Rey, F. S. B.
    da Fonseca, R.
    JOURNAL OF ANIMAL SCIENCE, 2015, 93 (08) : 3814 - 3819
  • [7] Comparison of different models for the estimation of genetic parameters in tropical goats
    José Ernandes Rufino de Souza
    Josiel Ferreira
    Iara Del Pilar Solar Diaz
    Robson Mateus Freitas Silveira
    Wandrick Hauss de Sousa
    Tropical Animal Health and Production, 2022, 54
  • [8] Comparison of different models for the estimation of genetic parameters in tropical goats
    Rufino de Souza, Jose Ernandes
    Ferreira, Josiel
    Solar Diaz, Iara Del Pilar
    Freitas Silveira, Robson Mateus
    de Sousa, Wandrick Hauss
    TROPICAL ANIMAL HEALTH AND PRODUCTION, 2022, 54 (06)
  • [9] Estimation of genetic parameters and trends for growth traits in Hays Converter cattle using multiple-trait and random regression models
    Khorshidi, R.
    MacNeil, M. D.
    Hays, D. P.
    Abo-Ismail, M. K.
    Crowley, J. J.
    Akanno, E. C.
    Wang, Z.
    Plastow, G.
    LIVESTOCK SCIENCE, 2020, 241
  • [10] ESTIMATION OF GENETIC PARAMETERS FOR BODY WEIGHT TRAITS IN MAZANDARAN NATIVE BREEDER HENS BY RANDOM REGRESSION MODELS
    Naderi, Yousef
    GENETIKA-BELGRADE, 2019, 51 (01): : 17 - 29