Unicity of Meromorphic Functions Concerning Higher Order Difference Operators

被引:0
|
作者
He, Z. Y. [1 ]
Wang, G. [1 ]
Fang, M. L. [1 ]
机构
[1] Hangzhou Dianzi Univ, Hangzhou, Peoples R China
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2024年 / 59卷 / 06期
关键词
meromorphic functions; differences; infinite order; unicity; 2; SETS;
D O I
10.3103/S1068362324700316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the unicity of meromorphic functions concerning higher order difference operators and mainly prove the following result: Let m, n(>= 6) be positive integers, let eta be a nonzero complex number, and let f be a nonconstant meromorphic function in the complex plane. If f(n) and (Delta(m)(eta) f)(n) share 1 CM, f and Delta(m)(eta) f share infinity IM, then Delta(m)(eta) f equivalent to tf, where t(n) = 1, and if m = 1, then t not equal -1. This improves the results due to Chen and Chen [Bull. Malays. Math. Sci. Soc. 35 (2012)] and Deng, Liu and Yang [Turkish J. Math. 41 (2017)] for the case of infinite order and higher order difference operators.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条