Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces

被引:0
|
作者
Hassannezhad, Asma [1 ]
Metras, Antoine [2 ]
Perrin, Helene [2 ]
机构
[1] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[2] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Steklov eigenvalues; Hyperbolic surfaces; Eigenvalue lower bounds; RIEMANN SURFACES; CURVATURE FLOWS; INEQUALITY;
D O I
10.1007/s12220-025-01990-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain geometric lower bounds for the low Steklov eigenvalues of finite-volume hyperbolic surfaces with geodesic boundary. The bounds we obtain depend on the length of a shortest multi-geodesic disconnecting the surfaces into connected components each containing a boundary component and the rate of dependency on it is sharp. Our result also identifies situations when the bound is independent of the length of this multi-geodesic. The bounds also hold when the Gaussian curvature is bounded between two negative constants and can be viewed as a counterpart of the well-known Schoen-Wolpert-Yau inequality for Laplace eigenvalues. The proof is based on analysing the behaviour of the corresponding Steklov eigenfunction on an adapted version of thick-thin decomposition for hyperbolic surfaces with geodesic boundary. Our results extend and improve the previously known result in the compact case obtained by a different method.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Large Steklov eigenvalues on hyperbolic surfaces
    Han, Xiaolong Hans
    He, Yuxin
    Hong, Han
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [2] UPPER BOUNDS FOR STEKLOV EIGENVALUES ON SURFACES
    Girouard, Alexandre
    Polterovich, Iosif
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 : 77 - 85
  • [3] MULTIPLICITY BOUNDS FOR STEKLOV EIGENVALUES ON RIEMANNIAN SURFACES
    Karpukhin, Mikhail
    Kokarev, Gerasim
    Polterovich, Iosif
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (06) : 2481 - 2502
  • [4] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [5] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668
  • [6] Upper bounds for the Steklov eigenvalues on trees
    He, Zunwu
    Hua, Bobo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [7] Upper bounds for the Steklov eigenvalues on trees
    Zunwu He
    Bobo Hua
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [8] MAXIMIZING STEKLOV EIGENVALUES ON SURFACES
    Petrides, Romain
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (01) : 95 - 188
  • [9] On Topological Upper-Bounds on the Number of Small Cuspidal Eigenvalues of Hyperbolic Surfaces of Finite Area
    Mondal, Sugata
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13208 - 13237
  • [10] Estimates for low Steklov eigenvalues of surfaces with several boundary components
    Perrin, Helene
    ANNALES MATHEMATIQUES DU QUEBEC, 2024, 49 (1): : 165 - 184