共 102 条
[71]
Chaibub Neto E., Bot B.M., Perumal T., Omberg L., Guinney J., Kellen M., Klein A., Friend S.H., Trister A.D., Personalized hypothesis tests for detecting medication response in parkinson disease patients using iphone sensor data, Biocomputing 2016: Proceedings of the Pacific Symposium, pp. 273-284, (2016)
[72]
Bollipo L.M., Kv K., Fast and robust supervised machine learning approach for classification and prediction of Parkinson’s disease onset, Comput Methods Biomech Biomed Eng Imaging & Visualization, 9, 6, pp. 690-706, (2021)
[73]
Asuroglu T., Ogul H., A deep learning approach for Parkinson’s disease severity assessment, Heal Technol, 12, 5, pp. 943-953, (2022)
[74]
Dharani M., Thamilselvan R., Hybrid optimization enabled deep learning model for Parkinson’s disease classification, Imagin Sci J, 72, 2, pp. 167-182, (2024)
[75]
Mpower: Mobile Parkinson’s Disease Voice Dataset
[76]
Sattar D., Salim R., A smart metaheuristic algorithm for solving engineering problems, Eng Comput, 37, 3, pp. 2389-2417, (2021)
[77]
Fu L., Feng Y., Majeed Y., Zhang X., Zhang J., Karkee M., Zhang Q., Kiwifruit detection in field images using faster r-CNN with ZFNet, IFAC-PapersOnLine, 51, 17, pp. 45-50, (2018)
[78]
Dimauro G., Di Nicola V., Bevilacqua V., Caivano D., Girardi F., Assessment of speech intelligibility in Parkinson’s disease using a speech-to-text system, IEEE Access, 5, pp. 22199-22208, (2017)
[79]
Tan M., Chen Q.V., Efficientnetv2: Smaller Models and Faster Training, (2021)
[80]
Simonyan K., Zisserman A., Very deep convolutional networks for large-scale image recognition, (2014)