共 102 条
- [91] Hsu W.-N., Zhang Y., Glass J., Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation, IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), IEEE. 2017
- [92] , pp. 16-23, (2017)
- [93] Jeong J., Jeong H., Kim H.-J., An autoencoder-based numerical training data augmentation technique, IEEE International Conference on Big Data (Big Data), IEEE. 2022
- [94] , pp. 5944-5951, (2022)
- [95] Arrieta A.B., Diaz-Rodriguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., Garcia S., Gil-Lopez S., Molina D., Benjamins R., Et al., Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible ai, Inf Fus, 58, pp. 82-115, (2020)
- [96] Adadi A., Berrada M., Peeking inside the black-box: a survey on explainable artificial intelligence (XAI), IEEE Access, 6, pp. 52138-52160, (2018)
- [97] Ramaiah A., Balasubramanian P.D., Appathurai A., Muthukumaran N.A., Detection of parkinson’s disease via clifford gradient-based recurrent neural network using multi-dimensional data, Rev Roum Des Sci Tech Sér Électrotech Et Énerg, 69, 1, pp. 103-108, (2024)
- [98] Ahalya R., Nkondo G.F., Snekhalatha U., Automated detection of Parkinson’s disease based on hybrid CNN and quantum machine learning techniques in MRI images, Biomed Eng Appl Basis Commun, 36, (2024)
- [99] Li C., Hui D., Wu F., Xia Y., Shi F., Yang M., Zhang J., Peng C., Feng J., Li C., Automatic diagnosis of Parkinson’s disease using artificial intelligence base on routine t1-weighted MRI, Front Med, 10, (2024)
- [100] Zhao S., Dai G., Li J., Zhu X., Huang X., Li Y., Tan M., Wang L., Fang P., Chen X., Et al., An interpretable model based on graph learning for diagnosis of Parkinson’s disease with voice-related EEG, NPJ Digit Med, 7, 1, (2024)