A predictive model for post-COVID-19 pulmonary parenchymal abnormalities based on dual-center data

被引:0
作者
Yao, Xiujuan [1 ,2 ]
Wu, Jianman [1 ,3 ]
Zou, Wei [1 ,2 ]
Lin, Xiaohong [1 ,2 ]
Xie, Baosong [1 ,2 ]
机构
[1] Fujian Med Univ, Shengli Clin Med Coll, Fuzhou 350001, Peoples R China
[2] Fujian Prov Hosp, Dept Pulm & Crit Care Med, Fuzhou 350001, Peoples R China
[3] Fujian Prov Hosp, Radiol Dept, Fuzhou 350001, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
SARS-CoV-2; sequelae; Pulmonary parenchymal abnormalities; Clinical prediction model; Computed tomography imaging; Nomogram; COVID-19; CT;
D O I
10.1038/s41598-024-79715-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Documented radiological and physiological anomalies among coronavirus disease 2019 survivors necessitate prompt recognition of residual pulmonary parenchymal abnormalities for effective management of chronic pulmonary consequences. This study aimed to devise a predictive model to identify patients at risk of such abnormalities post-COVID-19. Our prognostic model was derived from a dual-center retrospective cohort comprising 501 hospitalized COVID-19 cases from July 2022 to March 2023. Of these, 240 patients underwent Chest CT scans three months post-infection. A predictive model was developed using stepwise regression based on the Akaike Information Criterion, incorporating clinical and laboratory parameters. The model was trained and validated on a split dataset, revealing a 33.3% incidence of pulmonary abnormalities. It achieved strong discriminatory power in the training set (area under the curve: 0.885, 95% confidence interval 0.832-0.938), with excellent calibration and decision curve analysis suggesting substantial net benefits across various threshold settings. We have successfully developed a reliable prognostic tool, complemented by a user-friendly nomogram, to estimate the probability of residual pulmonary parenchymal abnormalities three months post-COVID-19 infection. This model, demonstrating high performance, holds promise for guiding clinical interventions and improving the management of COVID-19-related pulmonary sequela.
引用
收藏
页数:9
相关论文
共 31 条
  • [1] Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: Preliminary experience
    Antonio, GE
    Wong, KT
    Hui, DSC
    Wu, A
    Lee, N
    Yuen, EHY
    Leung, CB
    Rainer, TH
    Cameron, P
    Chung, SSC
    Sung, JJY
    Ahuja, AT
    [J]. RADIOLOGY, 2003, 228 (03) : 810 - 815
  • [2] Evaluation of long-term radiological findings, pulmonary functions, and health-related quality of life in survivors of severe COVID-19
    Bardakci, Mustafa Ilteris
    Ozturk, Esin Nagihan
    Ozkarafakili, Mufide Arzu
    Ozkurt, Huseyin
    Yanc, Ugur
    Yildiz Sevgi, Dilek
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (09) : 5574 - 5581
  • [3] Long COVID-19 Pulmonary Sequelae and Management Considerations
    Boutou, Afroditi K.
    Asimakos, Andreas
    Kortianou, Eleni
    Vogiatzis, Ioannis
    Tzouvelekis, Argyris
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [4] Mid-term pulmonary sequelae after hospitalisation for COVID-19: The French SISCOVID cohort
    Calcaianu, George
    Degoul, Samuel
    Michau, Benedicte
    Payen, Thibault
    Gschwend, Anthony
    Fore, Mathieu
    Iamandi, Carmen
    Morel, Hugues
    Oster, Jean-Philippe
    Bizieux, Acya
    Nocent-Ejnaini, Cecilia
    Carvallo, Cecile
    Romanet, Stephanie
    Goupil, Francois
    Leurs, Amelie
    Legrand, Marie-Germaine
    Portel, Laurent
    Claustre, Johanna
    Calcaianu, Mihaela
    Bresson, Didier
    Debieuvre, Didier
    [J]. RESPIRATORY MEDICINE AND RESEARCH, 2022, 82
  • [5] One-year follow-up of chest CT findings in patients after SARS-CoV-2 infection
    Chen, Yanfei
    Ding, Cheng
    Yu, Ling
    Guo, Wanru
    Feng, Xuewen
    Yu, Liang
    Su, Junwei
    Xu, Ting
    Ren, Cheng
    Shi, Ding
    Wu, Wenrui
    Yi, Ping
    Liu, Jun
    Tao, Jingjing
    Lang, Guanjing
    Li, Yongtao
    Xu, Min
    Sheng, Jifang
    Li, Lanjuan
    Xu, Kaijin
    [J]. BMC MEDICINE, 2021, 19 (01)
  • [6] Characteristics and Prognostic Factors of Pulmonary Fibrosis After COVID-19 Pneumonia
    Cocconcelli, Elisabetta
    Bernardinello, Nicol
    Giraudo, Chiara
    Castelli, Gioele
    Giorgino, Adelaide
    Leoni, Davide
    Petrarulo, Simone
    Ferrari, Anna
    Saetta, Marina
    Cattelan, Annamaria
    Spagnolo, Paolo
    Balestro, Elisabetta
    [J]. FRONTIERS IN MEDICINE, 2022, 8
  • [7] Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.1136/bmj.g7594]
  • [8] Histological Findings in Transbronchial Cryobiopsies Obtained From Patients After COVID-19
    Culebras, Mario
    Loor, Karina
    Sansano, Irene
    Persiva, Oscar
    Clofent, David
    Polverino, Eva
    Felipe, Almudena
    Osorio, Jeisson
    Munoz, Xavier
    Alvarez, Antonio
    [J]. CHEST, 2022, 161 (03) : 647 - 650
  • [9] Department of Error, 2022, Lancet, V399, P1778, DOI [10.1016/s0140-6736(22)00795-4, DOI 10.1016/S0140-6736(22)00795-4]
  • [10] Development and Validation of a Nomogram for Assessing Survival in Patients With COVID-19 Pneumonia
    Dong, Yi-Min
    Sun, Jia
    Li, Yi-Xin
    Chen, Qian
    Liu, Qing-Quan
    Sun, Zhou
    Pang, Ran
    Chen, Fei
    Xu, Bing-Yang
    Manyande, Anne
    Clark, Taane G.
    Li, Jin-Ping
    Orhan, Ilkay Erdogan
    Tian, Yu-Ke
    Wang, Tao
    Wu, Wei
    Ye, Da-Wei
    [J]. CLINICAL INFECTIOUS DISEASES, 2021, 72 (04) : 652 - 660