Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle

被引:0
作者
Kondo, Toshiki [1 ]
Okamoto, Mamoru [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 6卷 / 02期
基金
日本学术振兴会;
关键词
Schr & ouml; dinger equation; Ill-posedness; Norm inflation; Unconditional uniqueness; INITIAL-VALUE PROBLEM; WELL-POSEDNESS; SCHRODINGER-EQUATIONS; LOCAL EXISTENCE; ILL-POSEDNESS; KDV; 3RD-ORDER; NLS;
D O I
10.1007/s42985-025-00315-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a periodic higher-order nonlinear Schr & ouml;dinger equation with the nonlinearity uk partial derivative xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>k \partial _xu$$\end{document}, where k is a natural number. We prove the norm inflation in a subspace of the Sobolev space Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}. In particular, the Cauchy problem is ill-posed in Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Chirped solitary pulse for nonlinear schrödinger equation with fifth order nonlinearity [J].
Mandal, Sagarika ;
Layek, Manas ;
Sinha, Abhijit .
JOURNAL OF OPTICS-INDIA, 2025,
[42]   The nonlinear Schrödinger equation in cylindrical geometries [J].
Krechetnikov, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (15)
[43]   On the control issues for higher-order nonlinear dispersive equations on the circle [J].
Capistrano-Filho, Roberto de A. ;
Kwak, Chulkwang ;
Leal, Francisco J. Vielma .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
[44]   Well-posedness for the fourth-order Schrödinger equation with third order derivative nonlinearities [J].
Hiroyuki Hirayama ;
Masahiro Ikeda ;
Tomoyuki Tanaka .
Nonlinear Differential Equations and Applications NoDEA, 2021, 28
[45]   A higher-order quadratic NLS equation on the half-line [J].
Himonas, A. Alexandrou ;
Yan, Fangchi .
JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)
[46]   The Cauchy problem for higher-order modified Camassa-Holm equations on the circle [J].
Yan, Wei ;
Li, Yongsheng ;
Zhai, Xiaoping ;
Zhang, Yimin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :397-433
[47]   On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations [J].
Smirnov, Aleksandr O. ;
Frolov, Eugene A. ;
Dmitrieva, Lada L. .
SYMMETRY-BASEL, 2024, 16 (01)
[48]   A high-order compact ADI scheme for two-dimensional nonlinear Schrödinger equation with time fractional derivative [J].
Zhang, Yuting ;
Feng, Xinlong ;
Qian, Lingzhi .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02)
[49]   Exact solutions, bifurcation analysis and chaotic behavior of high-order nonlinear Schrödinger equation with conformal fractional derivative [J].
Liu, Mengyao ;
Xiao, Xiang .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
[50]   Nonlinear smoothing for the periodic generalized nonlinear Schr?dinger equation [J].
McConnell, Ryan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 :353-379