Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle

被引:0
作者
Kondo, Toshiki [1 ]
Okamoto, Mamoru [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 6卷 / 02期
基金
日本学术振兴会;
关键词
Schr & ouml; dinger equation; Ill-posedness; Norm inflation; Unconditional uniqueness; INITIAL-VALUE PROBLEM; WELL-POSEDNESS; SCHRODINGER-EQUATIONS; LOCAL EXISTENCE; ILL-POSEDNESS; KDV; 3RD-ORDER; NLS;
D O I
10.1007/s42985-025-00315-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a periodic higher-order nonlinear Schr & ouml;dinger equation with the nonlinearity uk partial derivative xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>k \partial _xu$$\end{document}, where k is a natural number. We prove the norm inflation in a subspace of the Sobolev space Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}. In particular, the Cauchy problem is ill-posed in Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion [J].
Carvajal, X. ;
Panthee, M. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (02)
[32]   Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation [J].
Weng, Weifang ;
Yan, Zhenya .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
[33]   Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network [J].
Djelah, Gabriel ;
Ndzana, Fabien I. I. ;
Abdoulkary, Saidou ;
English, L. Q. ;
Mohamadou, Alidou .
PHYSICS LETTERS A, 2024, 518
[34]   A Note on the Illposedness for Anisotropic Nonlinear Schrdinger Equation [J].
Xiao Yi ZHANG Academy of Mathematics and Systems Science .
Acta Mathematica Sinica(English Series), 2008, 24 (06) :891-900
[35]   A note on the illposedness for anisotropic nonlinear Schrödinger equation [J].
Xiao Yi Zhang .
Acta Mathematica Sinica, English Series, 2008, 24 :891-900
[36]   Finite time blowup for the nonlinear Schrödinger equation with a delta potential [J].
Hauser, Brandon ;
Holmes, John ;
O'Keefe, Eoghan ;
Raynor, Sarah ;
Yu, Chuanyang .
INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04) :591-604
[37]   Asymptotic behavior for a class of derivative nonlinear Schrödinger systems [J].
Katayama, Soichiro ;
Sakoda, Daisuke .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (03)
[38]   Exploring dynamics of multi-peak and breathers-type solitary wave solutions in generalized higher-order nonlinear Schrödinger equation and their optical [J].
Yasin, Faisal ;
Alshehri, Mansoor H. ;
Arshad, Muhammad ;
Shang, Yilun ;
Afzal, Zeeshan .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 :402-413
[39]   Higher-order nonlinear Schrodinger equations with singular data [J].
Hayashi, Nakao ;
Naumkin, Pavel I. ;
Ogawa, Takayoshi .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) :263-276
[40]   Darboux and generalized Darboux transformations for the fractional integrable derivative nonlinear Schrödinger equation [J].
Zhang, Sheng ;
Zhang, Yuying ;
Xu, Bo ;
Li, Xinyu .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,