Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle

被引:0
作者
Kondo, Toshiki [1 ]
Okamoto, Mamoru [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 6卷 / 02期
基金
日本学术振兴会;
关键词
Schr & ouml; dinger equation; Ill-posedness; Norm inflation; Unconditional uniqueness; INITIAL-VALUE PROBLEM; WELL-POSEDNESS; SCHRODINGER-EQUATIONS; LOCAL EXISTENCE; ILL-POSEDNESS; KDV; 3RD-ORDER; NLS;
D O I
10.1007/s42985-025-00315-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a periodic higher-order nonlinear Schr & ouml;dinger equation with the nonlinearity uk partial derivative xu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>k \partial _xu$$\end{document}, where k is a natural number. We prove the norm inflation in a subspace of the Sobolev space Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}. In particular, the Cauchy problem is ill-posed in Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(\mathbb {T})$$\end{document} for any s is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \mathbb {R}$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Unconditional uniqueness of higher order nonlinear Schrödinger equations
    Friedrich Klaus
    Peer Kunstmann
    Nikolaos Pattakos
    Czechoslovak Mathematical Journal, 2021, 71 : 709 - 742
  • [22] Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation
    Cui, Shikun
    Wang, Zhen
    NONLINEARITY, 2024, 37 (10)
  • [23] Prolongation structures of the super mixed derivative nonlinear Schrödinger equation
    Su, Huajie
    Yu, Yuanyuan
    Guo, Jiafeng
    Yan, Zhaowen
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [24] THE ZAKHAROV-SHABAT EQUATIONS FOR THE DERIVATIVE NONLINEAR SCHRDINGER EQUATION
    黄念宁
    廖国钧
    Chinese Science Bulletin, 1991, (22) : 1935 - 1936
  • [25] Decay of the radius of spatial analyticity for the modified KdV equation and the nonlinear Schrödinger equation with third order dispersion
    Figueira, Renata O.
    Panthee, Mahendra
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (04):
  • [26] Soliton, breather and rational solutions of a high-order modified derivative nonlinear Schrödinger equation
    Sun, Hong-Qian
    Huang, Jun-Hua
    Ma, Li-Yuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (03):
  • [27] Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation
    Kudryashov, Nikolay A.
    Lavrova, Sofia F.
    MATHEMATICS, 2024, 12 (11)
  • [28] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, : 1127 - 1179
  • [29] Well-Posedness of an Integrable Generalization of the Nonlinear Schrödinger Equation on the Circle
    Athanasios S. Fokas
    A. Alexandrou. Himonas
    Letters in Mathematical Physics, 2011, 96 : 169 - 189
  • [30] Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation
    Aloui, Lassaad
    Tayachi, Slim
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)