Spin-valley locked excited states spectroscoy in a one-particle bilayer graphene quantum dot

被引:2
作者
Duprez, Hadrien [1 ]
Cances, Solenn [1 ]
Omahen, Andraz [1 ]
Masseroni, Michele [1 ]
Ruckriegel, Max J. [1 ]
Adam, Christoph [1 ]
Tong, Chuyao [1 ]
Garreis, Rebekka [1 ]
Gerber, Jonas D. [1 ]
Huang, Wister [1 ]
Gachter, Lisa [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba 3050044, Japan
[3] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba 3050044, Japan
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
SUPERCONDUCTIVITY;
D O I
10.1038/s41467-024-54121-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current semiconductor qubits rely either on the spin or on the charge degree of freedom to encode quantum information. By contrast, in bilayer graphene the valley degree of freedom, stemming from the crystal lattice symmetry, is a robust quantum number that can therefore be harnessed for this purpose. The simplest implementation of a valley qubit would rely on two states with opposite valleys as in the case of a single-carrier bilayer graphene quantum dot immersed in a small perpendicular magnetic field (B perpendicular to less than or similar to 100 mT). However, the single-carrier quantum dot excited states spectrum has not been resolved to date in the relevant magnetic field range. Here, we fill this gap, by measuring the parallel and perpendicular magnetic field dependence of this spectrum with an unprecedented resolution of 4 mu eV. We use a time-resolved charge detection technique that gives us access to individual tunnel events. Our results come as a direct verification of the predicted spectrum and establish a new upper-bound on inter-valley mixing, equal to our energy resolution. Our charge detection technique opens the door to measuring the relaxation time of a valley qubit in a single-carrier bilayer graphene quantum dot. A single electron quantum dot in bilayer graphene is a candidate for a spin-valley qubit, however its excited state spectrum has not been determined under relevant conditions. Here the authors accomplish this using time-resolved charge detection technique and set the new upper bound on the inter-valley mixing.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Spin relaxation in a single-electron graphene quantum dot [J].
Banszerus, L. ;
Hecker, K. ;
Moeller, S. ;
Icking, E. ;
Watanabe, K. ;
Taniguchi, T. ;
Volk, C. ;
Stampfer, C. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Spin-valley coupling in single-electron bilayer graphene quantum dots [J].
Banszerus, L. ;
Moeller, S. ;
Steiner, C. ;
Icking, E. ;
Trellenkamp, S. ;
Lentz, F. ;
Watanabe, K. ;
Taniguchi, T. ;
Volk, C. ;
Stampfer, C. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Pulsed-gate spectroscopy of single-electron spin states in bilayer graphene quantum dots [J].
Banszerus, L. ;
Hecker, K. ;
Icking, E. ;
Trellenkamp, S. ;
Lentz, F. ;
Neumaier, D. ;
Watanabe, K. ;
Taniguchi, T. ;
Volk, C. ;
Stampfer, C. .
PHYSICAL REVIEW B, 2021, 103 (08)
[4]   Observation of the Spin-Orbit Gap in Bilayer Graphene by One-Dimensional Ballistic Transport [J].
Banszerus, L. ;
Frohn, B. ;
Fabian, T. ;
Somanchi, S. ;
Epping, A. ;
Mueller, M. ;
Neumaier, D. ;
Watanabe, K. ;
Taniguchi, T. ;
Libisch, F. ;
Beschoten, B. ;
Hassler, F. ;
Stampfer, C. .
PHYSICAL REVIEW LETTERS, 2020, 124 (17)
[5]  
Burkard G, 2023, REV MOD PHYS, V95, DOI [10.1103/RevModphys.95.025003, 10.1103/RevModPhys.95.025003]
[6]   Semiconductor qubits in practice [J].
Chatterjee, Anasua ;
Stevenson, Paul ;
De Franceschi, Silvano ;
Morello, Andrea ;
de Leon, Nathalie P. ;
Kuemmeth, Ferdinand .
NATURE REVIEWS PHYSICS, 2021, 3 (03) :157-177
[7]  
Denisov A. O., arXiv
[8]   Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots [J].
Eich, Marius ;
Pisoni, Riccardo ;
Overweg, Hiske ;
Kurzmann, Annika ;
Lee, Yongjin ;
Rickhaus, Peter ;
Ihn, Thomas ;
Ensslin, Klaus ;
Herman, Frantisek ;
Sigrist, Manfred ;
Watanabe, Kenji ;
Taniguchi, Takashi .
PHYSICAL REVIEW X, 2018, 8 (03)
[9]  
Elzerman JM, 2004, NATURE, V430, P431, DOI [10.1038/nature02693, 10.1039/nature02693]
[10]   MEASUREMENTS OF COULOMB BLOCKADE WITH A NONINVASIVE VOLTAGE PROBE [J].
FIELD, M ;
SMITH, CG ;
PEPPER, M ;
RITCHIE, DA ;
FROST, JEF ;
JONES, GAC ;
HASKO, DG .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1311-1314