Between Weak and Bruhat: The Middle Order on Permutations

被引:0
|
作者
Bouvel, Mathilde [1 ]
Ferrari, Luca [2 ]
Tenner, Bridget Eileen [3 ]
机构
[1] Univ Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
[2] Univ Firenze, Dept Math & Comp Sci, Florence, Italy
[3] Depaul Univ, Dept Math Sci, Chicago, IL USA
关键词
Permutation; Inversion sequence; Poset; Enumeration; Involution; M & ouml; bius function; INTERVALS;
D O I
10.1007/s00373-024-02885-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a partial order Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_n$$\end{document} on permutations of any given size n, which is the image of a natural partial order on inversion sequences. We call this the "middle order." We demonstrate that the poset Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_n$$\end{document} refines the weak order on permutations and admits the Bruhat order as a refinement, justifying the terminology. These middle orders are distributive lattices and we establish some of their combinatorial properties, including characterization and enumeration of intervals and boolean intervals (in general, or of any given rank), and a combinatorial interpretation of their Euler characteristic. We further study the (not so well-behaved) restriction of this poset to involutions, obtaining a simple formula for the M & ouml;bius function of principal order ideals there. Finally, we offer further directions of research, initiating the study of the canonical Heyting algebra associated with Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_n$$\end{document}, and defining a parking function analogue of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}_n$$\end{document}.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Wachs permutations, Bruhat order and weak order
    Brenti, Francesco
    Sentinelli, Paolo
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 119
  • [2] Prism permutations in the Bruhat order
    Tenner, Bridget Eileen
    ADVANCES IN APPLIED MATHEMATICS, 2024, 159
  • [3] Enumeration of Bigrassmannian Permutations Below a Permutation in Bruhat Order
    Kobayashi, Masato
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (01): : 131 - 137
  • [4] Enumeration of Bigrassmannian Permutations Below a Permutation in Bruhat Order
    Masato Kobayashi
    Order, 2011, 28 : 131 - 137
  • [5] From the weak Bruhat order to crystal posets
    Patricia Hersh
    Cristian Lenart
    Mathematische Zeitschrift, 2017, 286 : 1435 - 1464
  • [6] From the weak Bruhat order to crystal posets
    Hersh, Patricia
    Lenart, Cristian
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1435 - 1464
  • [7] Weak Bruhat order on the set of faces of the permutohedron and the associahedron
    Palacios, Patricia
    Ronco, Maria O.
    JOURNAL OF ALGEBRA, 2006, 299 (02) : 648 - 678
  • [8] Special matchings and permutations in Bruhat orders
    Brenti, Francesco
    Caselli, Fabrizio
    Marietti, Mario
    ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (02) : 210 - 226
  • [9] The Weak Order on Pattern-Avoiding Permutations
    Drake, Brian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [10] The equational theory of the weak Bruhat order on finite symmetric groups
    Santocanale, Luigi
    Wehrung, Friedrich
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (08) : 1959 - 2003