Improving bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer

被引:0
|
作者
Wang, Jingyuan [1 ]
Zhao, Yuan [1 ,2 ]
Wang, Wenyan [1 ,2 ]
Wu, Ziheng [1 ,2 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243000, Peoples R China
[2] AHUT, Wuhu Technol & Innovat Res Inst, Wuhu 241000, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 01期
基金
中国国家自然科学基金;
关键词
Time-frequency diagram; Vision transformer; Attention module; Fault diagnosis;
D O I
10.1007/s11227-024-06793-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Bearings are indispensable components in mechanical equipment, it is crucial to realize accurate and reliable fault diagnosis of bearings. Traditional bearing fault diagnosis methods suffer from insufficient feature extraction and poor robustness. This paper presents an improved bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer. On the one hand, the method adopts continuous wavelet transform to map the time-domain feature relationship of vibration onto the time-frequency domain. On the other hand, the method designs a novel vision transformer for bearing fault diagnosis model which can effectively improve the fault diagnosis performance and reduce the computational complexity on the basis of retaining the advantage of local feature extraction and dealing with long-range feature dependencies. In this paper, a new multi-head attention module called SRWA is designed to be utilized on the novel vision transformer model. Experiments are conducted to assess and analyze the performance of the proposed models using the bearing datasets: Case Western Reserve University data set and Harbin Institute of Technology inter-shaft bearing fault diagnosis data set. The experimental results demonstrate that the classification performance of the novel model put forward in this paper surpasses the state-of-the-art bearing fault diagnosis models on different datasets, even under variable operating conditions and noise conditions.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Rolling bearing fault diagnosis method by using feature extraction of convolutional time-frequency image
    Hou, Junjian
    Lu, Xikang
    Zhong, Yudong
    He, Wenbin
    Zhao, Dengfeng
    Zhou, Fang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (09) : 4212 - 4228
  • [42] A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
    Jiang, Zuhua
    Zhang, Kun
    Xiang, Ling
    Yu, Gang
    Xu, Yonggang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [43] A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis
    Cheng, Yao
    Zou, Dong
    Zhang, Weihua
    Wang, Zhiwei
    JOURNAL OF SENSORS, 2019, 2019
  • [44] Speed estimation based on time-frequency fusion and its application in feature extraction of bearing fault
    School of Urban Rail Transportation, Soochow University, Suzhou 215006, China
    J Vib Shock, 2013, 18 (174-178):
  • [45] Method for Fault Diagnosis of Track Circuits Based on a Time-Frequency Intelligent Network
    Peng, Feitong
    Liu, Tangzhi
    ELECTRONICS, 2024, 13 (05)
  • [46] Time-Frequency Fault Feature Extraction for Rolling Bearing Based on the Tensor Manifold Method
    Wang, Fengtao
    Chen, Shouhai
    Sun, Jian
    Yan, Dawen
    Wang, Lei
    Zhang, Lihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [47] A strong anti-noise and easily deployable bearing fault diagnosis model based on time-frequency dual-channel Transformer
    Xu, Zhao
    Jia, Zhiyang
    Wei, Yiwei
    Zhang, Shuyan
    Jin, Zhong
    Dong, Wenpei
    MEASUREMENT, 2024, 236
  • [48] Feature extraction method of bearing performance degradation based on time-frequency image fusion
    Zhang, Lijun
    Liu, Bo
    Zhang, Bin
    He, Fei
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2013, 49 (22): : 53 - 58
  • [49] Adaptive time-frequency filtering method based on CPP and S transform and its application in fault diagnosis of rolling bearing
    Chen X.
    Zhang K.
    Jin F.
    Li L.
    2018, Beijing University of Aeronautics and Astronautics (BUAA) (33): : 147 - 155
  • [50] Train Bearing Fault Diagnosis Based on Time-Frequency Signal Contrastive Domain Share CNN
    Zhang, Yupeng
    Hua, Juntao
    Zhang, Dingcheng
    He, Jiayuan
    Fang, Xia
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 33669 - 33681