Improving bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer

被引:0
|
作者
Wang, Jingyuan [1 ]
Zhao, Yuan [1 ,2 ]
Wang, Wenyan [1 ,2 ]
Wu, Ziheng [1 ,2 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243000, Peoples R China
[2] AHUT, Wuhu Technol & Innovat Res Inst, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-frequency diagram; Vision transformer; Attention module; Fault diagnosis;
D O I
10.1007/s11227-024-06793-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Bearings are indispensable components in mechanical equipment, it is crucial to realize accurate and reliable fault diagnosis of bearings. Traditional bearing fault diagnosis methods suffer from insufficient feature extraction and poor robustness. This paper presents an improved bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer. On the one hand, the method adopts continuous wavelet transform to map the time-domain feature relationship of vibration onto the time-frequency domain. On the other hand, the method designs a novel vision transformer for bearing fault diagnosis model which can effectively improve the fault diagnosis performance and reduce the computational complexity on the basis of retaining the advantage of local feature extraction and dealing with long-range feature dependencies. In this paper, a new multi-head attention module called SRWA is designed to be utilized on the novel vision transformer model. Experiments are conducted to assess and analyze the performance of the proposed models using the bearing datasets: Case Western Reserve University data set and Harbin Institute of Technology inter-shaft bearing fault diagnosis data set. The experimental results demonstrate that the classification performance of the novel model put forward in this paper surpasses the state-of-the-art bearing fault diagnosis models on different datasets, even under variable operating conditions and noise conditions.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Diesel engine fault diagnosis method based on wavelet time-frequency diagram and Swin Transformer
    Liu Z.
    Bai Y.
    Li S.
    Jia X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (09): : 2986 - 2998
  • [2] A Novel Hierarchical Vision Transformer and Wavelet Time-Frequency Based on Multi-Source Information Fusion for Intelligent Fault Diagnosis
    Gong, Changfen
    Peng, Rongrong
    SENSORS, 2024, 24 (06)
  • [3] A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model
    Tang, Xinyu
    Xu, Zengbing
    Wang, Zhigang
    SENSORS, 2022, 22 (10)
  • [4] Bearing Fault Diagnosis Based on Optimal Time-Frequency Representation Method
    Ruiz Quinde, Israel
    Chuya Sumba, Jorge
    Escajeda Ochoa, Luis
    Antonio, Jr.
    Guevara, Vallejo
    Morales-Menendez, Ruben
    IFAC PAPERSONLINE, 2019, 52 (11): : 194 - 199
  • [5] Multimodal time-frequency graph fusion based fault diagnosis
    Yang, Hongyan
    Yao, Qi
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [6] Bearing Fault Diagnosis Based on Image Information Fusion and Vision Transformer Transfer Learning Model
    Zhang, Zichen
    Li, Jing
    Cai, Chaozhi
    Ren, Jianhua
    Xue, Yingfang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [7] Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram
    Chang, Chun
    Wang, Qiyue
    Jiang, Jiuchun
    Jiang, Yan
    Wu, Tiezhou
    ENERGY, 2023, 278
  • [8] Locomotive bearing fault diagnosis based on deep time-frequency features
    Zhang L.
    Zhen C.-Z.
    Xiong G.-L.
    Wang C.-B.
    Xu T.-P.
    Tu W.-B.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (06): : 247 - 258
  • [9] A Novel Method of Bearing Fault Diagnosis in Time-Frequency Graphs Using InceptionResnet and Deformable Convolution Networks
    Li, Shaobo
    Yang, Wangli
    Zhang, Ansi
    Liu, Huibin
    Huang, Jinyuan
    Li, Chuanjiang
    Hu, Jianjun
    IEEE ACCESS, 2020, 8 : 92743 - 92753
  • [10] A method of fault detection and diagnosis based on time-frequency analysis
    Liang, YingBo
    Zhang, LiHong
    Li, Jin
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1407 - 1410