Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer

被引:4
作者
Wang, Xinqiao [1 ,2 ]
Yin, Xue [1 ]
Li, Yuxin [1 ]
Zhang, Shuhui [1 ]
Hu, Meie [1 ]
Wei, Minjie [1 ]
Li, Zhenhua [1 ]
机构
[1] China Med Univ, Sch Pharm, Shenyang 110122, Liaoning, Peoples R China
[2] China Med Univ, Dept Pharm, Hosp 1, Shenyang 110001, Liaoning, Peoples R China
关键词
Pancreatic cancer; Nanoparticles; Gene targeting; Immunotherapy; MESOPOROUS SILICA NANOPARTICLES; IRON-OXIDE NANOPARTICLES; PLGA-BASED NANOPARTICLES; TUMOR MICROENVIRONMENT; SUPPRESSOR-CELLS; SIRNA DELIVERY; CO-DELIVERY; PHASE-I; DRUG; GEMCITABINE;
D O I
10.1186/s12951-024-02975-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
引用
收藏
页数:18
相关论文
共 107 条
[1]   Anti-CD19 CAR T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma [J].
Abramson, Jeremy S. .
TRANSFUSION MEDICINE REVIEWS, 2020, 34 (01) :29-33
[2]   Selective tumor antigen vaccine delivery to human CD169+ antigen-presenting cells using ganglioside-liposomes [J].
Affandi, Alsya J. ;
Grabowska, Joanna ;
Olesek, Katarzyna ;
Venegas, Miguel Lopez ;
Barbaria, Arnaud ;
Rodriguez, Ernesto ;
Mulder, Patrick P. G. ;
Pijffers, Helen J. ;
Ambrosini, Martino ;
Kalay, Hakan ;
O'Toole, Tom ;
Zwart, Eline S. ;
Kazemier, Geert ;
Nazmi, Kamran ;
Bikker, Floris J. ;
Stoeckl, Johannes ;
van den Eertwegh, Alfons J. M. ;
de Gruijl, Tanja D. ;
Storm, Gert ;
van Kooyk, Yvette ;
den Haan, Joke M. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (44) :27528-27539
[3]   Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer [J].
Agbaria, Majd ;
Jbara-Agbaria, Doaa ;
Grad, Etty ;
Ben-David-Naim, Meital ;
Aizik, Gil ;
Golomb, Gershon .
JOURNAL OF CONTROLLED RELEASE, 2023, 355 :312-326
[4]   PLGA Based Nanoparticles for the Monocyte-Mediated Anti-Tumor Drug Delivery System [J].
Allavena, Paola ;
Palmioli, Alessandro ;
Avigni, Roberta ;
Sironi, Marina ;
La Ferla, Barbara ;
Maeda, Akihiro .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2020, 16 (02) :212-223
[5]   The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers [J].
Andrade, Fernanda ;
German-Cortes, Julia ;
Montero, Sara ;
Carcavilla, Pilar ;
Baranda-Martinez-Abascal, Diego ;
Molto-Abad, Marc ;
Seras-Franzoso, Joaquin ;
Diaz-Riascos, Zamira Vanessa ;
Rafael, Diana ;
Abasolo, Ibane .
PHARMACEUTICS, 2023, 15 (06)
[6]   Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors [J].
Anthiya, Shubaash ;
Ozturk, Suleyman Can ;
Yanik, Hamdullah ;
Tavukcuoglu, Ece ;
Sahin, Adem ;
Datta, Dhrubajyoti ;
Charisse, Klaus ;
Alvarez, David Moreira ;
Loza, Maria Isabel ;
Calvo, Alfonso ;
Sulheim, Einar ;
Loevenich, Simon ;
Klinkenberg, Geir ;
Schmid, Ruth ;
Manoharan, Muthiah ;
Esendagli, Gunes ;
Alonso, Maria Jose .
JOURNAL OF CONTROLLED RELEASE, 2023, 357 :67-83
[7]   ynthesis, characterization, and evaluation of poly (D, L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy [J].
Arora, Sumit ;
Swaminathan, Suresh K. ;
Kirtane, Ameya ;
Srivastava, Sanjeev K. ;
Bhardwaj, Arun ;
Singh, Seema ;
Panyam, Jayanth ;
Singh, Ajay P. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 :2933-2942
[8]   How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions [J].
Bruger, Annika M. ;
Dorhoi, Anca ;
Esendagli, Gunes ;
Barczyk-Kahlert, Katarzyna ;
van der Bruggen, Pierre ;
Lipoldova, Marie ;
Perecko, Tomas ;
Santibanez, Juan ;
Saraiva, Margarida ;
Van Ginderachter, Jo A. ;
Brandau, Sven .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2019, 68 (04) :631-644
[9]   Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression [J].
Chang, Chih-Hao ;
Qiu, Jing ;
O'Sullivan, David ;
Buck, Michael D. ;
Noguchi, Takuro ;
Curtis, Jonathan D. ;
Chen, Qiongyu ;
Gindin, Mariel ;
Gubin, Matthew M. ;
van der Windt, Gerritje J. W. ;
Tonc, Elena ;
Schreiber, Robert D. ;
Pearce, Edward J. ;
Pearce, Erika L. .
CELL, 2015, 162 (06) :1229-1241
[10]   Transcytosis Mediated Deep Tumor Penetration for Enhanced Chemotherapy and Immune Activation of Pancreatic Cancer [J].
Chen, Hongyi ;
Song, Haolin ;
Luo, Yifan ;
Li, Chufeng ;
Wang, Yu ;
Liu, Jie ;
Luo, Feifei ;
Fan, Hongrui ;
Li, Xuwen ;
Sun, Tao ;
Jiang, Chen .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (28)