Extremes of Nonstationary Harmonizable Processes

被引:0
作者
Grigoriu, M. [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
关键词
Extremes of random processes; Finite dimensional distributions; Finite dimensional (FD) models; Generalized spectral density; Nonstationary processes; Weak convergence;
D O I
10.1007/s11009-025-10138-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite dimensional (FD) models Xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_d$$\end{document}, i.e., deterministic functions of time and finite sets of d random variables, are developed for a class of nonstationary processes X, referred to as harmonizable. The FD models are based on Karhunen-Lo & egrave;ve and spectral representations of X. Conditions are established under which distributions of extremes of X can be approximated by those of extremes of Xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_d$$\end{document} provided that the stochastic dimension d is sufficiently large. FD models are constructed for monochromatic, Brownian motion and Ornstein-Uhlenbeck processes. Numerical results suggest that their extremes can be used as surrogates for the extremes of these processes in agreement with our theoretical findings.
引用
收藏
页数:29
相关论文
共 21 条
[1]  
[Anonymous], 1974, The Fast Fourier Transform
[2]  
Billingsley, 1968, CONVERGENCE PROBABIL
[3]  
Brabenec RL., 1990, Introduction to real analysis
[4]   Evaluation of Karhunen-Loeve, spectral, and sampling representations for Stochastic processes [J].
Grigoriu, M .
JOURNAL OF ENGINEERING MECHANICS, 2006, 132 (02) :179-189
[5]  
Grigoriu M., 1995, APPL NONGAUSSIAN PRO
[6]  
Grigoriu M., 2020, Springer, V1458, P37001
[7]  
Grigoriu M., Boston Applications in Science and Engineering, DOI 10.1007978-0-8176-8228-61015.60001
[8]   Harmonizable Nonstationary Processes [J].
Grigoriu, Mircea .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (03) :842-867
[9]   PC TRANSLATION MODELS FOR RANDOM VECTORS AND MULTIVARIATE EXTREMES [J].
Grigoriu, Mircea .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02) :A1228-A1251
[10]  
Hernndez DB., 1995, Lectures on probability and second order random fields, DOI [10.1142/2491, DOI 10.1142/2491]