On the essential norms of Toeplitz operators on abstract Hardy spaces built upon Banach function spaces

被引:1
作者
Karlovych, Oleksiy [1 ]
Shargorodsky, Eugene [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Dept Matemat, P-2829516 Caparica, Portugal
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2025年 / 31卷 / 01期
关键词
Banach function space; Abstract Hardy space; Toeplitz operator; Essential norm;
D O I
10.1007/s40590-024-00689-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach function space over the unit circle such that the Riesz projection P is bounded on X and let H[X] be the abstract Hardy space built upon X. We show that the essential norm of the Toeplitz operator T(a):H[X]-> H[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(a):H[X]\rightarrow H[X]$$\end{document} coincides with & Vert;a & Vert;L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert a\Vert _{L<^>\infty }$$\end{document} for every a is an element of C+H infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in C+H<^>\infty $$\end{document} if and only if the essential norm of the backward shift operator T(e-1):H[X]-> H[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\textbf{e}_{-1}):H[X]\rightarrow H[X]$$\end{document} is equal to one, where e-1(z)=z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{e}_{-1}(z)=z<^>{-1}$$\end{document}. This result extends an observation by B & ouml;ttcher, Krupnik, and Silbermann for the case of classical Hardy spaces.
引用
收藏
页数:9
相关论文
共 12 条
[1]  
BENNETT C., 1988, Interpolation of Operators
[2]   A GENERAL LOOK AT LOCAL PRINCIPLES WITH SPECIAL EMPHASIS ON THE NORM COMPUTATION ASPECT [J].
BOTTCHER, A ;
KRUPNIK, N ;
SILBERMANN, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (04) :455-479
[3]  
Bttcher A., 2006, ANAL TOEPLITZ OPERAT
[4]  
Garnett J.B., 2007, Bounded Analytic Functions, Revised First Ed
[5]  
Gohberg I.C., 1968, Stud. Math., V31, P347
[6]   Best constants for the Riesz projection [J].
Hollenbeck, B ;
Verbitsky, IE .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) :370-392
[7]   Noncompactness of Toeplitz operators between abstract Hardy spaces [J].
Karlovich, Alexei .
ADVANCES IN OPERATOR THEORY, 2021, 6 (02)
[8]  
Karlovych O., 2022, Proc. Am. Math. Soc. Ser. B, V9, P60, DOI [10.1090/bproc/118, DOI 10.1090/BPROC/118]
[9]   When are the norms of the Riesz projection and the backward shift operator equal to one? [J].
Karlovych, Oleksiy ;
Shargorodsky, Eugene .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (12)
[10]   The Coburn Lemma and the Hartman-Wintner-Simonenko Theorem for Toeplitz Operators on Abstract Hardy Spaces [J].
Karlovych, Oleksiy ;
Shargorodsky, Eugene .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (01)