A super-resolution algorithm to fuse orthogonal CT volumes using OrthoFusion

被引:0
作者
Abbott, Rebecca E. [1 ]
Nishimwe, Alain [2 ]
Wiputra, Hadi [2 ]
Breighner, Ryan E. [3 ]
Ellingson, Arin M. [1 ]
机构
[1] Univ Minnesota, Dept Family Med & Community Hlth, Div Phys Therapy & Rehabil Sci, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[3] Hosp Special Surg, Dept Radiol & Imaging, New York, NY 10021 USA
基金
美国国家卫生研究院;
关键词
Super Resolution; Bone models; Computed tomography; Image Fusion; Spatial resolution enhancement;
D O I
10.1038/s41598-025-85516-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
OrthoFusion, an intuitive super-resolution algorithm, is presented in this study to enhance the spatial resolution of clinical CT volumes. The efficacy of OrthoFusion is evaluated, relative to high-resolution CT volumes (ground truth), by assessing image volume and derived bone morphological similarity, as well as its performance in specific applications in 2D-3D registration tasks. Results demonstrate that OrthoFusion significantly reduced segmentation time, while improving structural similarity of bone images and relative accuracy of derived bone model geometries. Moreover, it proved beneficial in the context of biplane videoradiography, enhancing the similarity of digitally reconstructed radiographs to radiographic images and improving the accuracy of relative bony kinematics. OrthoFusion's simplicity, ease of implementation, and generalizability make it a valuable tool for researchers and clinicians seeking high spatial resolution from existing clinical CT data. This study opens new avenues for retrospectively utilizing clinical images for research and advanced clinical purposes, while reducing the need for additional scans, mitigating associated costs and radiation exposure.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Biplanar Videoradiography to Study the Wrist and Distal Radioulnar Joints [J].
Akhbari, Bardiya ;
Morton, Amy M. ;
Moore, Douglas C. ;
Crisco, Joseph J. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (168) :1-20
[2]  
Bätz M, 2016, IEEE IMAGE PROC, P2822, DOI 10.1109/ICIP.2016.7532874
[3]   A new 2D and 3D imaging approach to musculo-skeletal physiology and pathology with low-dose radiation and the standing position : the EOS system [J].
Dubousset, J ;
Charpak, G ;
Dorion, I ;
Skalli, W ;
Lavaste, F ;
Deguise, J ;
Kalifa, G ;
Ferey, S .
BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE, 2005, 189 (02) :287-297
[4]  
El Hakimi W, 2013, COMP MED SY, P445, DOI 10.1109/CBMS.2013.6627837
[5]   Super-Resolution in Medical Imaging [J].
Greenspan, Hayit .
COMPUTER JOURNAL, 2009, 52 (01) :43-63
[6]   Metrics for 3D Rotations: Comparison and Analysis [J].
Huynh, Du Q. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 35 (02) :155-164
[7]  
Isaac JS, 2015, 2015 INTERNATIONAL CONFERENCE ON TECHNOLOGY FOR SUSTAINABLE DEVELOPMENT (ICTSD-2015)
[8]   A New Sparse Representation Framework for Reconstruction of an Isotropic High Spatial Resolution MR Volume From Orthogonal Anisotropic Resolution Scans [J].
Jia, Yuanyuan ;
Gholipour, Ali ;
He, Zhongshi ;
Warfield, Simon K. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (05) :1182-1193
[9]   Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation [J].
Jiang, Changhui ;
Zhang, Qiyang ;
Fan, Rui ;
Hu, Zhanli .
SCIENTIFIC REPORTS, 2018, 8
[10]   Validation of an automated shape-matching algorithm for biplane radiographic spine osteokinematics and radiostereometric analysis error quantification [J].
Kage, Craig C. ;
Akbari-Shandiz, Mohsen ;
Foltz, Mary H. ;
Lawrence, Rebekah L. ;
Brandon, Taycia L. ;
Helwig, Nathaniel E. ;
Ellingson, Arin M. .
PLOS ONE, 2020, 15 (02)