The intelligent fault identification method based on multi-source information fusion and deep learning

被引:0
|
作者
Guo, Dashu [1 ]
Yang, Xiaoshuang [1 ]
Peng, Peng [2 ]
Zhu, Lei [3 ]
He, Handong [1 ,4 ,5 ]
机构
[1] Anhui Agr Univ, Sch Resources & Environm, Hefei 230036, Peoples R China
[2] Anhui Inst Geol Sci, Geol Survey Anhui Prov, Hefei 230036, Peoples R China
[3] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
[4] Anhui Prov Key Lab Farmland Ecol Conservat & Pollu, Hefei 230036, Peoples R China
[5] Anhui Agr Univ, Coll Resources & Environm, Engn & Technol Res Ctr Intelligent Manufacture & E, Hefei 230036, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Fault Identification; Multi-source Information Fusion; Deep learning; Topographic features; DIGITAL ELEVATION MODEL; GEOLOGICAL STRUCTURES; ACTIVE FAULT; EXTRACTION; ZONE; EARTHQUAKE; LINEAMENTS; CHINA; BASIN; DEM;
D O I
10.1038/s41598-025-90823-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Faults represent significant geological structures. Conventional fault identification methods pri-marily rely on the linear features of faults, achieved through the interpretation of remote sensing imagery (RSI). To more accurately enhance the morphological features of faults and achieve their rapid, precise, and intelligent identification, this paper employs a multi-source information fusion method. By analyzing and processing RSI, digital elevation model, and geological map data, the spectral, topographic, geomorphic, and structural features of faults are extracted. By training samples and applying fusion algorithms, the spectral, topographic, geomorphic, and structural features are integrated to enhance the morphological features information of faults. Ultimately, intelligent fault identification is realized through deep learning-based image recognition technology. First, 16 influencing factors are selected from the perspectives of spectral, topographic, geomorphic, and structural features. Second, the importance of each influencing factor is predicted using 4 machine learning methods. Finally, fault identification is carried out on the fault identification map, which is fused with multi-source feature information, using the Convolutional Neural Network Model. The study applies the method to the southern part of Jinzhai County, Lu'an City. The results indicate that among the machine learning methods, the classification and regression Trees model achieved an accuracy of 0.993, true positive rate of 0.988, F1-score of 0.994. Topographic position index(TPI), Valley line (VL), Surface cutting depth (SCD), and RSI all show high importance across the four machine learning models, indicating their crucial role in fault identification. For the Convolutional Neural Network model-based method, the Validation Accuracy(Val_Accuracy) was 0.990, F1-score was 0.736, and Validation Loss(Val_Loss) was 0.025, suggesting that this method can accurately identify faults in the study area.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] The Research of Multi-source Information Fusion Based on Cloud Computing
    Li, Rongrong
    Li, Kangshun
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 440 - 443
  • [42] An orientation estimation algorithm based on multi-source information fusion
    Liu, Gong-Xu
    Shi, Ling-Feng
    Xun, Jian-Hui
    Chen, Sen
    Zhao, Lei
    Shi, Yi-Fan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (11)
  • [43] Information Fusion in a Multi-Source Incomplete Information System Based on Information Entropy
    Li, Mengmeng
    Zhang, Xiaoyan
    ENTROPY, 2017, 19 (11)
  • [44] Formation drillability prediction based on multi-source information fusion
    Ma, Hai
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2011, 78 (02) : 438 - 446
  • [45] Multi-source information fusion based heterogeneous network embedding
    Li, Bentian
    Pi, Dechang
    Lin, Yunxia
    Khan, Izhar Ahmed
    Cui, Lin
    INFORMATION SCIENCES, 2020, 534 : 53 - 71
  • [46] Intelligent Sensing of Thermal Error of CNC Machine Tool Spindle Based on Multi-Source Information Fusion
    Yang, Zeqing
    Liu, Beibei
    Zhang, Yanrui
    Chen, Yingshu
    Zhao, Hongwei
    Zhang, Guofeng
    Yi, Wei
    Zhang, Zonghua
    SENSORS, 2024, 24 (11)
  • [47] An improved multi-source information fusion method for IMU compensation of missile
    Shi, Chunfeng
    Chen, Xiyuan
    Wang, Junwei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [48] Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network
    Cai, Baoping
    Liu, Yonghong
    Fan, Qian
    Zhang, Yunwei
    Liu, Zengkai
    Yu, Shilin
    Ji, Renjie
    APPLIED ENERGY, 2014, 114 : 1 - 9
  • [49] Multi-source Information Fusion for Depression Detection
    Wang, Rongquan
    Wang, Huiwei
    Hu, Yan
    Wei, Lin
    Ma, Huimin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 517 - 528
  • [50] Fault Identification of Electric Submersible Pumps Based on Unsupervised and Multi-Source Transfer Learning Integration
    Yang, Peihao
    Chen, Jiarui
    Wu, Lihao
    Li, Sheng
    SUSTAINABILITY, 2022, 14 (16)