The intelligent fault identification method based on multi-source information fusion and deep learning

被引:0
|
作者
Guo, Dashu [1 ]
Yang, Xiaoshuang [1 ]
Peng, Peng [2 ]
Zhu, Lei [3 ]
He, Handong [1 ,4 ,5 ]
机构
[1] Anhui Agr Univ, Sch Resources & Environm, Hefei 230036, Peoples R China
[2] Anhui Inst Geol Sci, Geol Survey Anhui Prov, Hefei 230036, Peoples R China
[3] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
[4] Anhui Prov Key Lab Farmland Ecol Conservat & Pollu, Hefei 230036, Peoples R China
[5] Anhui Agr Univ, Coll Resources & Environm, Engn & Technol Res Ctr Intelligent Manufacture & E, Hefei 230036, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Fault Identification; Multi-source Information Fusion; Deep learning; Topographic features; DIGITAL ELEVATION MODEL; GEOLOGICAL STRUCTURES; ACTIVE FAULT; EXTRACTION; ZONE; EARTHQUAKE; LINEAMENTS; CHINA; BASIN; DEM;
D O I
10.1038/s41598-025-90823-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Faults represent significant geological structures. Conventional fault identification methods pri-marily rely on the linear features of faults, achieved through the interpretation of remote sensing imagery (RSI). To more accurately enhance the morphological features of faults and achieve their rapid, precise, and intelligent identification, this paper employs a multi-source information fusion method. By analyzing and processing RSI, digital elevation model, and geological map data, the spectral, topographic, geomorphic, and structural features of faults are extracted. By training samples and applying fusion algorithms, the spectral, topographic, geomorphic, and structural features are integrated to enhance the morphological features information of faults. Ultimately, intelligent fault identification is realized through deep learning-based image recognition technology. First, 16 influencing factors are selected from the perspectives of spectral, topographic, geomorphic, and structural features. Second, the importance of each influencing factor is predicted using 4 machine learning methods. Finally, fault identification is carried out on the fault identification map, which is fused with multi-source feature information, using the Convolutional Neural Network Model. The study applies the method to the southern part of Jinzhai County, Lu'an City. The results indicate that among the machine learning methods, the classification and regression Trees model achieved an accuracy of 0.993, true positive rate of 0.988, F1-score of 0.994. Topographic position index(TPI), Valley line (VL), Surface cutting depth (SCD), and RSI all show high importance across the four machine learning models, indicating their crucial role in fault identification. For the Convolutional Neural Network model-based method, the Validation Accuracy(Val_Accuracy) was 0.990, F1-score was 0.736, and Validation Loss(Val_Loss) was 0.025, suggesting that this method can accurately identify faults in the study area.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] The DMF: Fault Diagnosis of Diaphragm Pumps Based on Deep Learning and Multi-Source Information Fusion
    Meng, Fanguang
    Shi, Zhiguo
    Song, Yongxing
    PROCESSES, 2024, 12 (03)
  • [2] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [3] Early warning of reciprocating compressor valve fault based on deep learning network and multi-source information fusion
    Wang, Hongyi
    Chen, Jiwei
    Zhu, Xinjun
    Song, Limei
    Dong, Feng
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 777 - 789
  • [4] A fast multi-source information fusion strategy based on deep learning for species identification of boletes
    Chen, Xiong
    Li, Jieqing
    Liu, Honggao
    Wang, Yuanzhong
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 274
  • [5] Bearing fault diagnosis method based on multi-source heterogeneous information fusion
    Zhang, Ke
    Gao, Tianhao
    Shi, Huaitao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (07)
  • [6] A Deep-Learning-Based Fault Diagnosis Method of Industrial Bearings Using Multi-Source Information
    Wang, Xiaolu
    Li, Aohan
    Han, Guangjie
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [7] High Impedance Fault Detection Method Based on Multi-source Information Fusion and CNN
    Chen, Wenqi
    Liao, Shengtao
    Xu, Baoqi
    Bai, Hao
    Guan, Guoliang
    Yao, Minghao
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 544 - 549
  • [8] Multi-Source Uncertain Information Fusion Method for Fault Diagnosis Based on Evidence Theory
    Mi, Jinhua
    Wang, Xinyuan
    Cheng, Yuhua
    Zhang, Songyi
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [9] Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques
    Xu, Peng
    Fu, Lixia
    Xu, Kang
    Sun, Wenbin
    Tan, Qian
    Zhang, Yunpeng
    Zha, Xiantao
    Yang, Ranbing
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2023, 119
  • [10] Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion
    Zeng, Xin
    Xiong, Xingzhong
    Luo, Zhongqiang
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (02) : 143 - 148