Understanding dislocation velocity in TaW using explainable machine learning

被引:1
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
[41]   Explainable AI-driven evaluation of plant protein rheology using tree-based and Gaussian process machine learning models [J].
Yilmaz, Mustafa Tahsin ;
Badurayq, Salman ;
Polat, Kemal ;
Milyani, Ahmad H. ;
Alkabaa, Abdulaziz S. ;
Gul, Osman ;
Saricaoglu, Furkan Turker .
AIN SHAMS ENGINEERING JOURNAL, 2025, 16 (09)
[42]   Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods [J].
Yang, Yang ;
Chui, Ting Fong May .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (11) :5839-5858
[43]   Predicting and analyzing the algal population dynamics of a grass-type lake with explainable machine learning [J].
Cui, Hao ;
Tao, Yiwen ;
Li, Jian ;
Zhang, Jinhui ;
Xiao, Hui ;
Milne, Russell .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 354
[44]   Thermal Comfort Model for HVAC Buildings Using Machine Learning [J].
Fayyaz, Muhammad ;
Farhan, Asma Ahmad ;
Javed, Abdul Rehman .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) :2045-2060
[45]   Machine learning emulators of dynamical systems for understanding ecosystem behaviour [J].
Moya, Oriol Pomarol ;
Mehrkanoon, Siamak ;
Nussbaum, Madlene ;
Immerzeel, Walter W. ;
Karssenberg, Derek .
ECOLOGICAL MODELLING, 2025, 501
[46]   Unsupervised machine learning in atomistic simulations, between predictions and understanding [J].
Ceriotti, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (15)
[47]   Development of a machine learning-driven formula for calculating fragment velocity [J].
Zhang, Sheng ;
Wang, Zhen-Qing ;
Li, Shu-Tao ;
Ai, Tian-Chun ;
Chen, Ye-Qing .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2025, 201
[48]   BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization [J].
Shen, Yuxuan ;
Pan, Yue .
APPLIED ENERGY, 2023, 333
[49]   Unraveling nonlinear and spatial non-stationary effects of urban form on surface urban heat islands using explainable spatial machine learning [J].
Ming, Yujia ;
Liu, Yong ;
Li, Yingpeng ;
Song, Yongze .
COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2024, 114
[50]   Identification of chimera using machine learning [J].
Ganaie, M. A. ;
Ghosh, Saptarshi ;
Mendola, Naveen ;
Tanveer, M. ;
Jalan, Sarika .
CHAOS, 2020, 30 (06)